RICARDO MARIANO GALO BORGES

BANCO DE DADOS ORIENTADOS A OBJETOS

Monografia apresentada & Escola
Politécnica da Universidade de Séo Paulo,
Educacio Continuada em Engenharia para
obtencio do titule de especialista

em Engenharia de Software.

Area de Concentragio :

Engenharia de Software

Orientador :

Jorge Rady de Almeida Finior

Sao Paulo
2002

AGRADECIMENTOS
A paciéncia e dedicacio ao orientador Jorge Rady, que revisou ¢ fez os
comentarios necessdrios para execuciio deste trabalho.
A minha esposa Andréia, que deu o apeio necessario para que eu tivesse tempo

para me dedicar a pesquisa e redacio.

RESUMO
O trabalho apresenta os principais pontos que caracterizam os SGBD Orientados a
Objetos, tendo como base o Manifesto do Sistema de Gerenciamento de Dados. Séo
explicadas todas as caracteristicas consideradas obrigatorias. Também ¢ feita uma
comparagiio entre os SGBD Relacionais, Objetos-Relacionais e Orientados a objetos,
mostrando a evolugio gradativa do SGBD até o momento. Uma anélise do mercado
para os SGBD Orientados a Objetos é apresentada de forma a indicar os pontos que
favorecem a adogdo destes sistemas. A linguagem OQL também € apresentada e
também ¢ discutido os problemas em definir um padréo definitivo sobre este tipo de
linguagem, os grupos ODMG, OMG ¢ SQL3 tem trabalhado em definir a

padronizagdo da linguagem criada para manipular objetos.

ABSTRACT

This dissertation introduces the main points of the OODBMS technology, based on
DBMS Manifesto, it explores all the issue that are required. The RDBMS, the
ORDBMS and the QOBDMS are compared, showing the gradual evolution of the
DBMS until this time. An analysis of database market for OODBMS has been
showing, and the do’s and don’ts of this technologic is presented itself. The language
OQL and compared with SQL language, and how the organization ODMG, OMG
and SQL3 have been working to define the standard language.

1. INEEOQUGHD 1uvovevereeecmssseiesissansns st sb sttt s bbb o 1
1.1 Estrutura Ao TIabalhoocccoierierereernercricrsciis st ransestsstsnnsnsstesssssassssesernsanssies 2
2. Tecnologia de Bancos De Dadoscoueurremmveireininmsiiieninnsnsiesi st 4
3. Mercado para 08 SGBDOO ...ttt 9
3.1 Tendéncias dos produtos SGBDOO ..ot 11
3.2 Tendéncia do Desenvolvimento de SORWAIESvveviviercciiiiiiiiniiienee 12
3.3 Tendancias dos NEZOCIOS ...c.umeiviririeresmsiinmiessieissnostassssssssrmsssssesssiissinss 14
4. Definigdes do SGBDOO Segundo a ODMGu..c..cciiiinniiiinninnicncisiniins 17
5. Bancos Relacionais, Objetos-Relacionais e Orientados A Objeto...........ccuve... 19
6. Caracteristicas dos sistemas gerenciadores de bases de dados orientadas a objetos
.. 24
7. Persisténcia de ODJEtOS c..orvvevviriiieiiieenrseess s 37
7.1 Niveis de PerSIStENCIA ..oovvrrecreerserrarersreirsessesrassssssseesasssssssssstns sy sassasssas e 38
8. Transacdes, Concorréncia, Recuperagio ¢ Controle de Versao.....cococveceereene. 39
8.1 TTANSAGAD «.vereuceeerenteernreesessese s ssasrarn s ern g s sbsadbe b e s R Aa s S eb st s bes et st s 39
8.2 COMCOTIENCIA eonervieireeeseereeeersisrsteostessstsnssremssstassaasasssaassorbissiotnessasssasnssssasassns 41
8.3 RECUPETAGHO ..cevemerrrartsrirscrresserissss st essiss et s s b a0 42
8.4 CONTOLE A VEISAO w.ooverererecrerseaeecetearessessisnessassssnstessestesnnsstssmassensssssscansass 43
9. Padrdes de Consultas de OBJELOScovuevrirrrvicrimimannineniniciissiiiinrs s 44
9.1 O que é diferente a0 cONSULAr ODJEIOS 7 .covviniiriiirrinnisinicsciietnn s 44
0.7 ODMG oneeeeeeeeeeeetesieeeseresesssesnssassatesesenssasesas st aara e e se s st e e ea s SR bR st et 47
0.3 OMG ceeeeeeeeeeeeeeteereeersesss e sssateeste e s e e e AR e et et a s R g s bt 50
9.4 SQL3 ..eoeueeeeecormcaciisiansarres bbb s st s e 53
9.5 Esforcos para UMfICAGHDcoveeureririrseescisr st s 54
10. Exemplos da linguagem OQL.......ooniiiiiiiinsicsiseees 55
11. Relago de alguns SGBDOO existentes N0 MErcado. ... uwrinmsrsissennsrecsasenes 59
12, COMCIUSHO ... tveerereeeeraresssesseesssarae e rostaesss e nansasssnes s sabtabesasansnesssssssersaansansnsssassssns 64

13. BIDHOZIATIA ...uoevveenecerecniimrress et et sb e s 66

LISTA DE FIGURAS

Figura 1 — Componentes de um banco de dados.........cvnicciiniinn 4
Figura 2 — A Evolugo dos SGBDOO «.covnuviiriiiiiirsisi st 7
Figura 3 — Comparagdo entre SGBDR, SGBDR ¢ SGBDOO.......cieirimeeneeaeens 21
Figura 4 — Rascunho de um SGBDOO ...ttt 24
Figura 5 — Usando 0 ODBMS com ODMG.......oooiiiinniiicins 48
Figura 6 - OMG — Arquitetura do Servigo de Persistencia.......coccovmvcmsererccmmieisnnnns 51
Figura 7 - OMG — Query Service ArchiteCtureooeimisncnniniiniiiiniiiiises 52

Figura 8 — EvOlugao do SQL......oivirrerrineerisiiiiiisnnsisisnsiinsn s ey

LISTA DE TABELAS

Tabela | — Comparativo de Bancos de Dados

...

1. INTRODUCAO

Os bancos de dados orientados a objetos surgem como uma evolugiio natural dos
bancos de dados relacionais para complementar as necessidades das linguagens de
programagdo orientadas a objeto. A complexidade dos sistemas desenvolvidos
atualmente, as necessidades de novos tipos de dados e os requisitos do comércio
eletronico ¢ da Internet fez surgir a necessidade de um banco de dados de terceira
geragio. O banco de dados relacional, que surgiu na década de 70, revolucionou 0s
sistemas da época, mantém até o momento a preferéncia devido a flexibilidade e
capacidade de processamento apresentadas, mas encontra barreiras que limitam as
caracteristicas dos sistemas € tomam tempo de programagdo devido a adaptagoes
necessérias entre a linguagem orientada a objeto e o banco de dados relacional.

As caracteristicas ¢ as promessas anunciadas pelas comunidades e fornecedores dos
Sistemas Gerenciadores de Bancos de Dados Orientados a Objetos — SGBDOO sdo
as mesmas pelos fornecedores das linguagens orientadas a objetos: menos abstragdo
de dados, maior rapidez no desenvolvimento e implementagio de aplicagdes,
reutilizacdo, etc. Da mesma forma, as dificuldades encontradas pelas empresas que
adotam os SGBDOO s#io praticamente as mesmas dos sistemas desenvolvidos em
linguagens orientadas a objeto: dificuldade em encontrar pessoal com conhecimento
necessario, dificuldades de implementagio ¢ desenvolvimento, desempenho
insatisfatério dos sistemas.

O objetivo deste trabatho & apresentar as caracteristicas dos bancos de dados
orientados a objeto, destacando suas principais vantagens e aplicabilidade dos
mesmos. Através da comparagio com o banco de dados relacional e com o banco de
dados objeto relacional, exemplificar suas principais caracteristicas e modos de
utilizagio. Os Sistemas Gerenciadores de Bancos de Dados Objeto-Relacionais —
SGDBOR apresentam caracteristicas comuns aos Sistemas Gerenciadores de Bancos
de Dados Relacionais — SGBDR e aos SGBDOO e tiveram aceitagio mais ripida do

mercado, apesar de ndo atenderem a todas as exigéncias do mundo da orientagéo a

objetos.

1.1 ESTRUTURA DO TRABALHO

O capitulo 2 apresenta as caracteristicas que compde um sistema de gerenciamento
de dados. Descreve a cromologia dos sistemas de gerenciamento, situando e
descrevendo a evolucdo dos sistemas, inicialmente adotado o conceito de banco de
dados relacionais, evoluindo para objeto relacional e como orientado a objetos.

No capitulo 3 sfio apresentados dados estatisticos e previsdes sobre o crescimento da
participagio dos Sistemas Gerenciadores de Bancos de Dados Orientados a Objetos
no mercado de software. Também sio descritas as tendéncias de mercado e de
desenvolvimento que devem favorecer o mercado de Sistemas Gerenciadores de
Bancos de Dados Orientados a Objetos e facilitar a participagfo deste no mercado.

O capitulo 4 descreve os principais pontos das definicBes apresentadas pelo Object
Database Management Group - ODMG para os Sistemas de Gerenciamento de
Dados. O ODMG ¢ um consércio de fornecedores de Sistemas Gerenciadores de
Bancos de Dados Orientados a Objetos cuja missdo é a de definir padrdes €
tecnologia dos sistemas de bases de dados orientadas a objetos.

No capitulo 5 apresentam-se caracteristicas dos diferentes sistemas de gerenciamento
de dados, bem como sdo feitas comparagbes entre eles, incluindo-se comentarios
sobre qual tecnologia se adapta as diferentes necessidades.

O capitulo 6 baseia-se no Manifesto dos Sistemas de Gerenciamento de Banco de
Dados, apresentando as caracteristicas obrigatorias 2 um sistema para que ele seja
considerado um Sistema Gerenciador de Bancos de Dados Orientados a Objetos.
Estas caracteristicas sfo: Objetos Complexos, Identidade de Objetos,
Encapsulamento, Tipos ¢ Classes, Hierarquia de tipos e classes, overriding,
overloading ¢ late binding, perfei¢io computacional, extensibilidade, persisténcia,
gerenciamento de alocagio secundaria, concorréncia e facilidade de consultas Ad-
Hoc.

O capitulo 7 descreve a capacidade que mais caracteriza os Sistemas Gerenciadores
de Bancos de Dados Orientados a Objetos, que é a capacidade de tornar um objeto

persistente e ser compartilhado entre varias sessoes.

O capitulo 8 descreve como os Sistemas Gerenciadores de Bancos de Dados
Orientados a Objetos devem tratar importantes operagBes de gerenciadores de bases
de dados, que garantem usabilidade e determinam a maturidade do sistema. Estas
operagdes constam transagoes, concorréncia, recuperagio e controle de versio.

O capitulo 9 apresenta como as consultas que manipulam objetos estio sendo
desenvolvidas e padronizadas segundo os consércios ODMG, OMG ¢ SQL3

No capitulo 10 sdo descritos alguns dos principais comandos OQL (Object Query
Language) ¢ a sintaxe correspondente em SQL

O capitulo 11 apresenta uma tabela com alguns sistemas de gerenciamento orientado
a objeto e quais as principais caracteristicas destes sistemas.

Finalmente, o capitulo 12 apresenta as conclusSes finais deste trabalho.

2.

TECNOLOGIA DE BANCOS DE DADOS

O conceito de banco de dados surgiu com a defini¢do de que é o componente da

Tecnologia da Informagfio voltado para ¢ armazenamento da informacdo, cuja

estrutura e comportamento deve propiciar esse armazenamento de forma persistente

e consistente.

Estrutura
/ \ p. Persisténcia
Banco de Dados Estado
\ T Consisténcia
Comportamento

— Transagio

Figura 1 — Componentes de um banco de dados

As defini¢Bes dos componentes sio as seguintes :

1)
2)

3)

4)

3)

6)

Estrutura: Reflete a estrutura dos objetos ao qual o modelo representa

Comportamento: Reflete o comportamento dos objetos do modelo

correspondente

Transacio: Conjunto de operagdes que levam o banco de dados de um estado

consistente a outro estado consistente.

Estado: Conjunto de dados armazenado do banco de dado num determinado

momento do tempo.

Consisténcia: Cada estado do banco de dados deve corresponder a um estado do

modelo

Persisténcia: Capacidade dos dados continuarem a existir apds o término da

execugdo das transagdes

Segundo Neto ¢ Pereira Neto, entende-se como modelo a representacdo de algo a ser

representando a partir do mundo real.

A Primeira Geragio de banco de dados surgiu na década de 70 e foi classificado
como banco de dados hierarquico ¢ de rede. Tais bases de dados eram utilizadas para
oferecer funces de gerenciamento de dados em um sistema com definiciio de dados
e linguagem de manipulagdo de dados para colegBes de registros. Na década de 80, a
primeira geragdo de banco de dados foi substituida pelos sistemas de gerenciamento
de dados relacionais, o qual foi considerado a Segunda Geragdo dos sistemas de
bancos de dados. Os bancos de dados relacionais foram considerados uma evolugdo
em relagdo aos bancos de dados hierdrquicos, pois permitiam acesso aos dados
através de linguagens de manipulagdo que néo eram orientadas a procedimentos ¢
propiciam um significativo grau de independéncia de dados.

Para a segunda geragio de Sistema Gerenciadores de Banco de Dados - SGBD, o
principal objetivo era atender &s necessidades das aplicagBes classificadas como
“husiness data processing”, € atualmente muitos pesquisadores indicam que cles s3o
inadequados para um grande niimero de novas aplicagBes. Aplicagdes do tipo CAD,
CASE e hipertexto sdo exemplos de aplicagbes que necessitam utilizar um SGBD
com capacidades especificas. Varios esforgos tém sido feitos na construgio de
protétipos com fungdes avancadas, e também os principais fornecedores de bancos
de dados estdo trabalhando para melhorar as fun¢des da chamada segunda geragio
de banco de dados. Com todos estes esforgos e necessidades do mercado, surgiu o
que esta sendo considerada a terceira geracdo de sistemas de bancos de dados.
Apesar de vérios distribuidores e empresas ja estarem utilizando as linguagens
orientadas a objetos, os bancos de dados orientados a objetos ainda nfio conquistaram

a unanimidade no mercado e ainda apresentam vérios pontos que necessitam de e

defini¢do e padronizagio.

A necessidade do bancos de dados orientados a objetos ja é um fato. Considere um
exemplo descrito no Manifesto dos Bancos de Dados de Terceira Geragdo, uma
aplicagdio para auxiliar na publicagio de jornais, na qual o usuério deseja definir o
Jay-out do jornal e entdo imprimi-lo. Esta aplicag@o necessita manipular e armazenar
em um banco de dados textos, graficos, icones e um incontdvel mimero de elementos
encontrados na maioria dos hipertextos, comuns na Internet. Ja existem sistemas hoje
que atendem estas necessidades utilizando linguagens orientadas a objetos ¢ bancos
de dados relacionais, mas gasta-se tempo em convertendo o modelo de objetos para o
modelo relacional e a utilizacdo de artimanhas de programagciio para atender as
necessidades dos sistemas e a falta de opgdes do banco de dados podem provocar um
tempo maior de programagcio e problemas de desempenho do sistema.

Outro exemplo envolve aplicagdes de apolices de seguros. Estas aplicagbes
envolvem dados tradicionais como nome e os dados de cada pessoa assegurada por
uma apdlice. Sistemas assim seriam mais completos se pudessem armazenar fotos
relacionadas 2 vistoria resultante de alguma alegagdo, ou guardar os originais de fax
enviados. E sempre complicado guardar este tipo de informagdo em banco de dados
relacionais.

Os primeiros desenvolvimentos e pesquisas relacionadas com banco de dados
orientados a objetos datam da década de 1970 e tiveram um significativo aumento
durante a década de 1980, sendo que os primeiros produtos comerciais datam do
inicio da década de 1990. Atualmente existem vérias empresas com diversos
produtos disponiveis, trabalhando para colocar no mercado produtos cada vez mais
robustos ¢ que atendam as necessidades do usuario.

Os bancos de dados orientados a objeto tém adeptos fiéis, como aplicativos que
envolvam comércio eletrénico, gerenciamento de dados para engenharia de produtos,

e com propositos especiais para dreas cOmo seguranga ¢ medicina.

O SGBDOO estd seguindo uma linha de maturagfo muito similar aos SGBDR. A
Figura 2 descreve a evolugdo da tecnologia do SGBDOO. A esquerda, ha as
linguagens orientadas a objetos que evoluiram do ponto de propiciar persisténcia de
objetos na aplicagio para persisténcia de objetos entre sessGes de usudrios. Deve
haver as caracteristicas minimas para banco de dados, como controle de
concorréncia, transacdes, recuperagdo, etc. Na parte central da figura estlo
representados os produtos suporte para a maioria das caracteristicas de um banco de
dados tradicional. Finalmente, os produtos de banco de dados passam a possuir
semanticas para declaragdo de objetos e a possibilidade de reduzir os trabalhos de

desenvolvimento, conforme representado na arte direita da figura.

Aumento das funcionalidades e facilidade de uso

pV/A NV N/

Linguagem O0 com Banco de dados com Banco de dados com alto

persisténcia simples linguagem QO para nivel de seménticas para
definigao de declaragio de dados
comportamento

Figura 2 — A Evolug&o dos SGBDOO

O préximo estagio de evolugdo ¢ mais dificil. Quanto mais recursos o banco de
dados propicia para o usuario, menor o esforgo requerido para sua programagao.
Atualmente o SGBDOO fornece um grande niimero de funges de baixo nivel com o
propdsito de otimizar ¢ acesso aos dados. O 6nus ¢é totalmente do desenvolvimento,
pois tem que determinar como utilizar estas fungdes para otimizar sua aplicagdo.

Um guia genérico para medir a maturidade de um banco de dados é o grau de quais
fungdes, tais como otimizagdo de acesso ao banco, regras de integridade, esquema e
migragio de banco de dados, arquivo, copia de seguranga e recuperagio de operagio
podem ser moldadas pelos usuérios usando comandos declarativos de alto nivel.
Atualmente, a maioria dos bancos de dados orientados a objeto requer que 0s

desenvolvedores escrevem cédigos para ter acesso a estas fungdes.

Outro sinal de maturidade desta nova tecnologia € o estabelecimento de grupos para
padronizar os diferentes aspectos da tecnologia. As empresas estdo preocupadas e
interessadas que sejam desenvolvidos padrdes para banco de dados orientados a
objetos. Por exemplo, o Object Management Group (OMG) é um associag@o sem
fins Jucrativos onde o objetivo é promover uma série de padres para viabilizar a
interoperabilidade entre os componentes de softwares. Interfaces sdo definidas em
jrea de comunicagdes (Object Request Broker), bancos de dados orientados a
objetos, interfaces de usudrio orientados a objetos, etc. Uma interface de
programacdo de aplicativos (API) vem sendo desenvolvida (por ODMG, Object
Database Management Group, um grupo de fornecedores de SGBDOO) deste modo
permitindo portabilidade de aplicativos através do SGDBOO. Outros padrdes, como
X3H7, um comité técnico sobre X3, formado para definir SGBDOO padrSes em
sreas como modelo de objetos e extensdes de objetos para SQL. Como a OMG esta
trabathando na padronizago de bancos de dados orientados a objetos € sobre a
definigio do OQL (Object Query Language), uma extensio do SQL para
manipulacio de objetos, serfo mais detalhados mais adiante neste trabalho.

Continuamente, os fornecedores de SGBDOO estdo adicionando cada vez mais
caracteristicas aos seus produtos para propiciar caracteristicas que 0 mercado espera
de sistemas maduros de gerenciamento de bancos de dados. Esta evolucdo nos leva

para o meio da escala evolucionaria mostrada na Figura 2.

3. MERCADO PARA OS SGBDOO

O IDC, uma empresa especializada em realizar pesquisas de mercado, reportou no
ano de 1999 uma receita de US$ 11,1 bilhdes para bancos de dados relacionais ¢
orientados a objetos, mas somente US$ 211 milhGes estavam relacionados com
SGBDOO. Até 2004, segundo um relatério de 2000, o instituto IDC previa um
crescimento anual a taxas de 18,2 % para bancos de dados relacionais e somente 252
% para SGBDOO

Os SGBDOO ndo se tornardo os maiores participantes do mercado de banco de
dados, mas existem nichos de mercado especificos que utilizam tal tecnologia
SGBDOO. Isto porque a tecnologia de orientago a objetos propicia manipular
objetos complexos muito bem, podendo-se entdo também manipular relacionamentos
complexos mais eficientemente. Bancos de dados orientados a objetos sio populares
para o uso em inteligéncia artificial ¢ em aplicagdes CAD/CAM, as quais envolvem
relacionamentos complexos de dados. Aplicagdes CAD/CAM também utilizam tipos
de dados multimidia, os quais os bancos de dados orientados a objetos manipulam
com maior eficiéncia. A tecnologia de bancos de dados orientados a objetos também
esti sendo utilizada na modelagem de aplicativos financeiros, tais com titulos e
derivados. A orientacio a objeto também prové caracteristicas como heranga,
permitindo a modelagem de novos instrumentos mais rapida e facilmente, 0 que
ajuda a estas empresas a langar produtos no mercado mais rapidamente.

A mais significante caracteristica da tecnologia dos bancos de dados orientados a
objetos é que ele combina a programagio orientada a objetos com tecnologia de
bancos de dados tradicionais para propiciar um sistema integrado de
desenvolvimento de aplicaces. H4 muitas vantagens em incluir as defini¢bes de
propriedades com a definigio de dados. As definicdes de operacdes facilitam o fato
de niio se criar dependéncias a um particular banco, € as defini¢tes de dados podem
ser estendidas para suportar dados complexos como multimidias, pela defini¢do de

novas classes que tenham operagbes para suportar 0s novos tipos de informagéo.

10

Outros pontos fortes da modelagem orientada a objetos sdo bem conhecidos. Por
exemplo, a heranga permite desenvolver solugbes para problemas complexos e pela
definigiio de novos objetos e pela utilizago de objetos pré-definidos. Polimorfismo e
associagio dindmica permitem definir uma operagdo para um objeto e entdo
compartilhar as especificagBes das operagbes com Outros objetos. Estes objetos
podem também estender suas operagSes para propiciar comportamentos que s&o
tinicos para aqueles objetos. A associagio dindmica determina em tempo de
execucio, qual destas operagdes estd sendo executada, dependendo da classe do
objeto que solicitou e execugdo desta operagfo. O polimorfismo e associagdo
dinamica sdo caracteristicas poderosas da orientacéo a objetos que permitem compor
objetos para promover solugBes sem ter escrito codigo que é especifico para cada
objeto. Todas estas capacidades reunidas propiciam vantagens significativas para o
desenvolvimento de aplicagdes de bancos de dados.

Apesar de algumas dificuldades e a complexidade de um sistema de banco de dados
orientado a objetos, hi algumas tendéncias indicando que esta tecnologia tera

bastante destaque no futuro.

11

3.1 TENDENCIAS DOS PRODUTOS SGBDOO

As principais tendéncias que se observam para os Sistemas Gerenciadores de Bancos

de Dados Orientados a Objetos séo :

e Maturidade dos Produtos : Para muitas aplicagBes, a barreira para um SGDB €
definida muito alta. Os clientes esperam caracteristicas como Recuperacdo
Automatica, Failover Automético, e replicagio de dados. Mais que isso, eles
querem comprovagio de desempenho e confiabilidade. No inicio dos SGBDOO,
os produtos simplesmente ndo alcancavam esta barreira. Clientes tinham a
percepgio de que escolhendo um SGBDOO, ocorria uma troca de ganhos de
desempenho com a perda de confianca no produto. Entretanto, a maioria dos
produtos disponiveis no mercados ja se encontra na sua quinta geragio ¢
oferecem caracteristicas SGDB e bom tratamento de registros. Os SGBDOO
estiio muito préximos dos SGBDR em relagdo as caracteristicas que um SGDB
oferece, eliminando a matorias das objeges em usar SGBDOO.

e Defini¢des de Padrdes : Umas das objecdes em adquirir produtos SGBDOO é
que os mesmos possuem interfaces proprietarias, sujeitando os clientes a vm
produto em particular. Muitos fornecedores entdo tem se sujeitando aos padrGes
do Object Database Management Group (ODMG). Estes padrbes cobrem
interfaces C++, Java, ¢ SmalTalk, como também suportam as ODL (Object
Definition Language), OQL (Object Query Language) e OIF (Object Interchange
Format). Desta forma aceitando estes padrdes, muitos clientes sentem-se mais
seguros em realizar investimentos no aprendizado do SGBDOO, pois podera ser
aplicado para diferentes produtos. O OIF ainda permite que organizagdes possam

mover objetos entre diferentes produtos SGDBOO, e entre SGBDOO e SGBDR.

12

3.2 TENDENCIA DO DESENVOLVIMENTO DE SOFTWARES

Uma das barreiras para adogio de SGBDOO era que o desenvolvimento de

aplicagbes em SGBDOO era diferente de um desenvolvimento de uma aplicagdo

tipica. Entretanto, tendéncias de desenvolvimento de programas tém tornado o

modelo de desenvolvimento para SGBDOO mais atrativo.

e Aplicagdes Clientes Thin : Muitas aplicacSes hoje utilizam um Cliente Thin, ou
cliente leve, um servidor de aplicagdes e um servidor de banco de dados para
propiciar eficiéncia, aumentar a reutilizacdo e aumentar a escalabilidade. Um dos
problemas histéricos com aplicagbes envolvendo SGBDOO ¢ que era necessario
a instalagdo ¢ manutencio de pesados runtimes nos clientes. Também era
necessaria a execugdo de quase toda a légica das aplicagdes nos clientes. Com
aplicagbes que utilizam Thin Client, s6 o servidor de aplicativos contém os
runtimes do SGBDQO. Um runtime muito pesado, neste caso, ndo € problema,
pois um servidor de aplicativos normalmente roda em maquinas bem poderosas €
compartilhados por diversos clientes. A execugio da logicas da aplicaciio ndo €
um problema porque este é o propésito dos servidores de aplicativos.

e AplicacBes via Web Interativas : Alguns modelos de dados favorecem ainda
mais 0s SGBDOO. Eles tipicamente substituem um intermediério com interac¢ao
direta entre o navegador do usudrio e os sistemas de informagbes da empresa.
Tais aplicagdes incluem self-service de empregados/cliente, publicagdes de
informacdes, e gerenciamento de cadeia de suprimentos. Tais servi¢os
tipicamente requerem o gerenciamento de uma grande quantidade de informacdes
sobre os usuarios do sistema e o contexto dos processos de negocios envolvidos.

Esta informagdo compde uma complexa rede de relacionamentos ideal para um

SGBDOO.

13

e Aplicacdes em Java : Também um caso especial de aplicagdes Thin Client, a
natureza da linguagem de programagio Java favorece ainda mais 0s SGBDOO.
As caracteristicas da linguagem Java enfatizam conceitos da orientagdo a objetos,
como encapsulamento, interfaces, e polimorfismo, bem como propiciam a
minimizagio de tarefas de baixo nivel como gerenciamento de memoéria. Uma
associacdo transparente de linguagens de programagdo com 0 SGBDOO atende
esta necessidade melhor que a utilizagdo de APIs de baixo nivel como JDBC
(Java Data Base Connectivity). O endosso da Sun com a associacdo da linguagem
feita pelo ODMG e o suporte para seus padrdes em todos 0s produtos SGBDOO,
o torna atracfio atrativa para armazenar objetos Java. Também, o suporte a0 Java
tem encorajado as organizagdes a considerar uma maior utilizagdo de aplicagdes
Java, incluindo aplicatives para Intranet, Internet, etc ... Como as organizagoes
planejam e desenvolvem cada vez mais aplicacdes que utilizam objetos
distribuidos, o papel dos SGBDOO para permitir persisténcia em objetos
distribuidos aumenta.

e Aplicagies Baseadas em Componentes : Enquanto desenvolvedores ufilizam
componentes nas interfaces para usuario, ha novas tendéncias em direcdo a
utilizaciio de componentes l6gicos de negécios que rodam em servidores de
aplicativos. Com estes componentes, desenvolvedores podem reutilizar unidades
16gicas de negdcios em multiplas aplicagdes e distribuir a logica de negocios
entre servidores de aplicativos. Como estes componentes codificam logicas de
negocios, eles requerem complexas redes de objetos para capturar o
relacionamento entre processos de negécios e recursos da empresa. Além do
mais, eles requerem manutengio dos estados destas redes através de componentes
rodando ¢ através do tempo. A necessidade de uma manutencdo de uma

complexa rede de objetos e de estados distribuidos tormam o SGBDOO uma

solugdo atrativa.

14

33 TENDENCIAS DOS NEGOCIOS

Além das tendéncias dos produtos SGDBOO e das tendéncias do desenvolvimento

de softwares, ha também tendéncias de negécios que favorecem a adogdo dos

SGBDOO.

Complexidade e Competi¢iio : Companhias utilizam cada vez mais as
informagcBes tecnolégicas como vantagens competitivas. Elas tém que utilizar os
avangos tecnolégicos para gerenciar complexidade e sobreviver a
competitividade. Uma crescente tendéncia de negocios indica que complexas
redes de objetos tém um papel em permitir negdcios de tecnologia. Esta
tendéncia é a integrago de processos de negécios entre departamentos funcionais
¢ até mesmo entre companhias. Por exemplo, o processo de negocios de
«Customer Care” necessita incluir o desenvolvimento de produtos, montagem,
suporte técmico, compatibilidade, e vendas. O processo de planejamento de
recursos precisa ser incluido em todos os niveis da cadeia de suprimento. A mais
significativa extensfio disto ¢ em relagdo ao “Gnico ponto de contato” de um
cliente em uma empresa. Deste modo, ¢ oferecido para o cliente um Unico ponto
de contato para todas as operagbes € servigos que o cliente utilize. Servigos de
telecomunicacBes sdo um 6timo exemplo disto. Um cliente pode ser beneficiado
por tnico ponto de contato para ativagio de servigos, gerenciamento de contas, ¢
suporte para ligagbes locais, de longas distincias, celulares, correio de voz, e
servicos de Internet. A chave para alcangar este tipo de integragdo ¢ rastreando o
relacionamento entre os vérios clientes, produtos e servigos, organizagdes,
fornecedores e rcgulamentagdes governamentais. Somente bancos de dados

orientados a objetos podem prover suporte para a integracdo em grandé escala.

135

e Aumento do Uso da Internet : Negocios tém tornado a Internet um meio para
gerenciar complexidade e aumentar a competitividade porque permite que sejam
feitas novas conexdes. A Internet conecta pessoas Com recursos das informagdes.
Também conecta as companhias de modo que possam cooperar com mais
eficiéncia. A barreira para estabilizar as conexdes para gerenciar complexidade e
aumentar competitividade é monitorar os relacionamentos resultantes. Estes
relacionamentos ocorrem nas aplicagdes e na infraestrutura da Internet. Os
switches e roteadores que fazem com que a rede necessite gerenciar um grande
ntmero de relacionamento de informagdes como configuragdes de dados para
produzir conexdes de rede. Além da infraestrutura de hardware, ha um
crescimento dos tamanhos dos softwares corporativos que necessitam gerenciar
relacionamentos, incluindo servigos de diretorios, proxies, € firewalls. Além do
mais, as razdes das organizagOes para construir aplicagbes para Internet €
vincular pessoas, Processos, € Tecursos de forma conjunta, resultando na
necessidade de gerenciar relacionamentos cada vez em um nivel mais rapido. O
foco no relacionamento significa que 0 SGBDOO ird se tornar cada vez mais

presente na infraestrutura da Internet € nas aplicacdes.

16

e Pacotes de Aplicagdes : A complexidade para desenvolver e gerenciar
aplicagSes personalizadas tem se tornando intoleravel para muitas organizagdes.
Para gerenciar isto, muitas destas organiza¢es tém utilizado pacotes de
aplicagdes de fornecedores como Baan, Oracle, PeopleSoft e SAP para fungdes
como Prestagio de Contas, Recursos Humanos, € Planejamento de Recursos. Um
grande nimero de fornecedores de segunda camada de softwares tem fornecido
solugdes ¢ atacado problemas especiais como automagio de forga de vendas ¢
planejamento de produtos. H4 também um grande mimero de ISVs (Independent
Sofiware Vendor)! que constréem pacotes de aplicativos especificos para
determinadas aplicagdes como a éarea financeira, de pesquisas biomédicas, e
fibricas de semicondutores. Como estes pacotes de aplicativos devem atender
cadeias de suprimentos e suportar cada vez mais complexos processos de
negbcios., eles irfio precisar de SGBDOO. Um importante requisito dos
SGDBOO para muitos pacotes de aplicativos seria a conversdo de dados
relacionais existentes ou integragio com SGBDR.

Segundo o relatério sobre o mercado para bancos de dados orientados a objetos, estas

tendéncias mostram como o mercado estd aberto e ira favorecer a entrada e a

participagfio dos bancos SGBDOO.

! {Jm ISV escreve ¢ vende programas para rodar em mais de um tipo de hardware e em diferentes

sistemas operacionais.

17

4. DEFINICOES DO SGBDOO SEGUNDO A ODMG
O ODMG define os padrdes e as associagdes entre o SGBDOO e certas linguagens

de programagdo orientadas a objetos. Quando se desenvolve um sistema com
linguagem orientada a objetos e utiliza-se bancos de dados relacionais, sempre ocorre
o que os programadores chamam de problema de impedincia (“impedence
mistmatch”), que se frata de uma forma educada de nomear os problemas
encontrados quando é necessdrio mapear os complexos objetos € seus relacionados
definidos no modelo de objetos para representagdes tabulares do banco de dados.

Segundo as especificagdes do ODMG, existem dois tipos de objetos: o persistente € 0
temporario. Os objetos temporarios s&0 gerenciados pelos sistemas em tempo de
execugiio, seja em SmalTalk, Java ou C++. Objetos temporarios ja sdo utilizados por
programadores, e os mesmos deixam de existir quando o programa termina. Objetos
permanentes s3o gerenciados pelo SGBDOO, mas o processo é totalmente
transparente para o programador. O objeto permanente ndo deixa de existir quando o
programa termina ¢ pode ser utilizado por qualquer outro programa que esteja em
execugdo. Um préximo acesso ao mesmo objeto serd mais rapido porque o objeto ja

se encontra em memoria.

18

O ODMG padronizou a linguagem para definigao de objetos (ODL — Object
Definition Laguange). Foi padronizada também a linguagem de manipulagiio dos
objetos (OML — Object Manipulation Language). Estas linguagens ndo fazem
distin¢fio entre objetos permanentes ou temporérios. A padronizagiio do ODMG néo
seria completa sem uma linguagem de acesso aos objetos, por isso existe a
Linguagem de Consulta a Objetos (OQL — Object Query Language), a qual se baseia
na padronizagio SQL-92 mas oferece suporte a orientagdio a objetos e integragio
com linguagens de programagfo que tenham associagdes com 0s padrdes definidos
pela ODMG. Segundo Jepson, uma consulta OQL pode ser executada a partir da
linguagem especifica, e incorporar métodos da mesma. Um paralelo aqui pode ser
estabelecido com bancos de dados relacionais. Os SGBDR também foram
padronizados, bem como foi criada uma linguagem de defini¢io de dados, a DDL
(Data Definition Language). Definiu-se também uma linguagem para manipulagio
de dados, o DML (Data Manipulation Language), e por ultimo foi criado o padrdo
mundialmente conhecido e aceito pelos desenvolvedores, a linguagem de consulta
estruturada, o SQL (Structured Query Language).

O ODMG também define e descreve como os objetos devem se relacionar entre si,
da mesma forma que o banco de dados relacional, os objetos podem se relacionar
com cardinalidades um-para-um (1-1), um-para-muitos (1-N), muitos-para-muitos
(N-N).

Atualmente a norma do ODMG esté na versdo 3.0, publicada em 2002. Informagdes

sobre esta publicagic podem ser encontradas no website do grupo

(http:/fwww.odmg.orgl).

19

5. BANCOS RELACIONAIS, OBJETOS-RELACIONAIS E ORIENTADOS
A OBJETO

Um sistema de gerenciamento de dados relacional (SGBDR) trata-se de uma colegfio
de dados organizados como tabelas, com as colunas representando as categorias dos
dados e as linhas representando os préprios dados. Por exemplo, uma tabela pode
conter informagdes sobre produtos, com as colunas representando tipos de produtos,
clientes, datas de venda e pregos.

Usuérios podem acessar os dados na ordem em quem foram gravados na tabela ou
consulté-los em diferentes modos para examind-los sob diferentes perspectivas.

Os bancos de dados relacionais sdo bons para processar grandes quantidades de
dados estruturados e alfanuméricos. Por exemplo, empresas usam os dados para
manter os registros das transag8es ou arquivos pessoais.

Entretanto, bancos de dados relacionais sdo rigidos porque seus dados podem ser
estruturados somente em tabelas. E os mesmos tém que trabalhar com um nimero
limitado e simplificado de dados, como os inteiros, e portanto podera haver
problemas manipulando tipos de dados complexos definidos pelos usudrios,
incluindo também dados multimidia.

Um banco de dados orientado a objetos (SGBDOO) suportam a modelagem e criagdo
de dados como objetos. Usudrios podem utilizar novos tipos de dados com SGBDOO
simplesmente criando novos objetos.

Com bancos de dados orientados a objetos, a aplicagio e o banco de dados utilizam
exatamente o mesmo modelo de objeto. Isto niio ocorre com bancos de dados
relacionais, onde usuarios devem utilizar um modelo de objetos para a aplicagdio ¢
um modelo relacional de dados para o banco de dados. Desenvolvedores tém entdo
que desenvolver procedimentos de mapeamento entre objetos ¢ 0 modelo relacional.
Programadores para bancos de dados relacionais gastam aproximadamente 25 % do
seu tempo de programagfo realizando o mapeamento entre objetos do programa e do

banco de dados, segundo o IDC.

20

SGBDQO apresenta grandes vantagens para aplicagBes que necessitam processar
relacionamentos complexos entre objetos de dados. Seja um exemplo relativo 3
modelagem de um Boeing 747 com SGBDOO. O relacionamento entre as partes da
aeronave é gerenciando automaticamente pelo banco de dades. Com um banco de
dados relacional, seria necessario decompor a aeropave em tabelas e entfo
estabelecer relacionamentos entre as tabelas que s3o necessarias para construgao de
uma aeronave.

Os bancos de dados objetos relacionais (SGBDR) s3o um passo intermediério entre
os bancos de dados relacionais e os bancos de dados orientados a objetos. Os
SGBDOR atendem partes dos critérios de um banco orientado a objeto. 0Os SGBDOR
representam uma evolugdo em relagdo ao SGBDR pois permitem a criagio de tipos
de dados definidos pelos usuarios e implementam caracteristicas de identidade de
objetos. Os SGBDOR apresentam algumas vantagens em relagdo aos SGBDOO, pois
sio fornecidos pelos principais distribuidores de bancos de dados relacionais, € 0s
usudrios de SGBDR podem preservar seus investimentos ¢ relacionamento com 0s
distribuidores e atualizar seus bancos de dados relacionais para objetos-relacionais.
A curva de aprendizado dos bancos SGBDOR ¢ menor porque se aproveita o
conhecimento da programagiio relacional e préticas de desenvolvimento.

Apesar destas facilidades, os SGBDOR ndo apresentam 0s mesmos beneficios do
SGBDOO. O objetivo principal & suportar tipos de dados complexos mas falha em
suportar relacionamento entre objetos complexos. Os bancos de dados objeto—
relacionais suportam o SQL3, que ¢ baseado no SQL2, adicionando os conceitos de
orientacio a objetos. Entretanto, os métodos de utilizagio de objetos ndo sdo os
mesmos entre as linguagens de programagio como C++, Java e SmalTalk. Isto acaba
provocando um desenvolvimento de codigo exfra para resolver as diferencas do
modelo de objeto e o modelo relacional. Os bancos de dados objeto—relacionais s&0
uma opgio onde existe somente a necessidade de processar tipos de dados
complexos. Mas caso a necessidade seja construir aplicagdes que usam

relacionamentos complexos entre objetos, deve ser considerado o uso do banco de

dados orientado a objeto.

21

SGBDOO

SGBDOR

SGBDR

Complexidade de relacionamento entre objetos

Complexidade dos tipos de dados
Figura 3 — Comparagdo entre SGBDR, SGBDR e SGBDOO

Uma tabela em um banco de dados relacional pode ser comparada com uma classe
em um banco de dados orientado a objetos, uma linha é similar a uma instincia de
uma classe com atributos, mas n3o com comportamentos. Uma coluna de uma tabela
¢ correspondente a um atributo da classe, com a diferenga que a coluna pode somente
armazenar tipos de dados simples, enquanto um atributo de uma classe pode
armazenar dados de qualquer tipo. As classes possuem métodos que séo completos
em termos computacionais, enquanto bancos de dados relacionais no possuem estas
caracteristicas. Pode-se dizer que algumas caracteristicas de programagfo conhecidas

como Stored Procedures atendem parcialmente estes requisitos.

22

Algumas vantagens em se utilizar SGBDOO em comparagdo a SGBDR utilizando

linguagens de programagfio orientadas a objetos seriam :

¢ Composicio de Objetos e relacionamentos : Um objeto em um SGBDOO pode
armazenar diversos tipos de dados como também outros objetos. Estes objetos
podem ser formados por diversas classes, de tamanhos e defini¢des diversas. Em
um banco relacional, uma tabela também pode ter relacionamento com um
incontavel nimero de tabelas, com relacionamentos normalizados e ligados
através de chaves estrangeiras. Ter um grande niimero de relacionamentos com
tabelas pequenas é sempre um problema devido as consultas que sdo
desenvolvidas e as jungdes existentes. Os objetos também representam methor
alguns modelos de dados reais e objetos complexos do que 0 mapeamento em
tabelas e linhas. Como este é o objetivo dos SGBDOO, poder manipular objetos
complexos, eles apresentam clara superioridade em relagio aos SGBDR ¢ até
SGBDOR.

e Hierdrquica de classes : Os dados do mundo real possuem uma hierarquia de
caracteristicas. Utilizando o exemplo de Empregados € mais facilmente descrito
em SGBDOO do que em SGBDOR. Um empregado pode ser um gerente ou nao,
isto pode ser implementando em um SGBDR tendo um campo de identificacdo
ou criando uma nova tabela com uma chave estrangeira para indicar o
relacionamento entre gerentes ¢ empregados. Em um banco SGBDOO, a classe
Empregado é simplesmente a classe pai da classe de Gerentes.

e Linguagens de consulta : O acesso aos dados de um SGBDOO é executado de
forma mais transparente do que com um SGBDR, devido a interagdo entre a
linguagem de programagdo ¢ o banco de dados. Mesmo com esta integracéo,
pode ser feito o acesso aos dados através da linguagem de consulta a objetos.

s Evitar o “Impedence Mismatch” : € 0 que ocoire quando uma linguagem de
programagcio orientada a objetos faz uso de um banco de dados relacional. Um
tempo & gasto mapeando os objetos em tabelas. Ocorrem também problemas
quando tipos de dados da linguagem ndo possuem correspondentes no banco de

dados, pois é necessario implementar a convers&o entre eles.

L

23

Menos modelos de dados : Um modelo de dados tipicamente deveria modelar
entidades ¢ seus relacionamentos, as restrigdes e as operagdes que alteram o
estado dos dados no sistema. Com o SGBDR néo € possivel mapear as operagdes
dinamicas e as regras que mudam o estado de um dado porque isto néic esta no
escopo do banco de dados. As aplicagbes que utilizam SGBDR possuem o
modelo entidade relacionamento para modelar as partes estatisticas do sistema €
um modelo separado para operagbes e comportamentos das entidades na
aplicagio. Com o SGBDOO nfo hé esta necessidade porque no modelo do banco
de dados e no modelo da aplicagdo, as entidades séo objetos no sistema. Uma

aplicagdio inteira pode ser totalmente modelada em um diagrama de UML.

Apesar destas atrativas vantagens, existem pontos que devem ser levantados para que

os desenvolvedores estejam atentos :

L]

Alteragdes no modelo : Em um SGBDR, modificar a estrutura dos objetos no
banco de dados &, em sua grande maioria, independente da aplicagdo. Em uma
aplicagdio baseada em SGBDOO a criagdo, atualiza¢o ou modificagio de uma
classe persistente significa que as outras classes que interagem com este também
devem sofrer alteracfio. Isto tipicamente significa que as mudangas em um
esquema envolvem uma recompilagido em todo o sistema. E também a
atualizagiio de todas as instincias de um objeto dentro do banco de dados pode
demorar bastante tempo dependendo do tamanho do banco.

Dependéncia de linguagem : Um banco orientado a objeto tem relagdo direta
com uma linguagem especifica de programagio via APL Isto significa que os
dados de um SGBDOO siio somente acessiveis a partir de uma linguagem de
programacdo usando uma API especifica. Isto ndo ocorre com 0s bancos
relacionais, onde existem aplicagdes desenvolvidas que podem trabalhar com
diferentes distribui¢des de banco de dados relacionais

Falta de queries Ad-Hoc : em um banco de dados relacional, pode-se criar
facilmente novas tabelas que em determinada consulta tém relacionamentos com
tabelas j4 existentes para atender necessidades de consultas Ad-Hoc. As consultas

que podem ser realizadas em um SGBDOO tém dependéncia direta com o

desenho do sistema.

24

6. CARACTERISTICAS DOS SISTEMAS GERENCIADORES DE BASES
DE DADOS ORIENTADAS A OBJETOS
A figura 4 representa as principais caracteristicas de bancos de dados orientados a

objetos.

Encapsulamento de dados Identidade de Objetos

Heranca —\ Polimorfismo

Programac#o Orientada a Objeto

Um SGBDQO ¢ a jungéo da programacgio
Orientada a Objetos e a tecnologia de banco de dados

Caracteristicas Bancos de Dados

Integridade Arquivamento
Seguranca Recuperagéo
Controle de Versbes Consultas
Transagdes Concorréncia
Persisténcia

Figura 4 — Rascunho de um SGBDOO

Alguns conceitos relacionados com orientagfio a objeto necessitam ser claramente
definidos para que o banco de dados orientado a objetos seja também melhor
utilizado. Podemos definir que orientagfio a objeto corresponde & organizacio de
sistemas como uma colecdo de objetos que integram estruturas de dados e

comportamentos. Alguns conceitos basicos e importantes s&o :

25

¢ Abstraciio: é a consideracio apenas das propricdades comuns de um conjunto de
objetos, omitindo detalhes, utilizada com freqiiéncia na definicdo de valores
similares € na formagio de um tipo a partir de outro, em diferentes niveis de
abstragfio. O uso de abstragio permite a gerago de tipos baseados em hierarquias
de tipos e de relacionamentos. Os principais conceitos de abstragdo utilizados no
banco de dados sdo generalizagiio e agregagfo. A generalizagio corresponde a
associacgdo “é um” onde, a partir de propriedades comuns de diferentes entidades,
é criada uma outra entidade. O processo inverso é a especializagfo. A agregacao
corresponde a associagdo “parte de”.

e Objeto: Os objetos s3o abstragdes de dados do mundo real, com uma interface de
nomes de operacdes e um estado local que permanece oculto. As abstragdes de
representagio e das operagdes so ambas suportadas no modelo de dados
orientados a objetos, ou seja, sio incorporadas as nogdes de estruturas de dados ¢
de comportamento. Um objeto tem um estado interno descrifo por atributos que
podem apenas ser acessados ou modificados através dc operagdes definidas pelo
criador do objeto. Um objeto individual é chamado instancia ou ocorréncia de
objeto. A parte estrutural de um objeto ¢ similar 4 nogéo de entidade no modelo
Entidade-Relacionamento.

Um banco de dados orientado a objetos ¢é o resultado da combinag8o dos principios

da programacfo orientada a objetos com os principios do gerenciamento de dados.

Os conceitos da programagio orientada a objetos, tais como encapsulamento,

polimorfismo e heranga sfo reforgados com os conceitos de gerenciamento de dados,

com a capacidade de controlar transa¢des, concorréncia, recuperagio € controle de
versoes.

O Manifesto sobre Bancos de dados orientados a objetos, lista as caracteristicas

obrigatérias de um sistema de gerenciamento de dados antes que ele seja classificado

como SGBDOO: Objetos Complexos, Identidade de Objetos, Encapsulamento, Tipos

e Classes, Hierarquia de tipos e classes, Overriding, overloading e late binding,

perfeiciio computacional, extensibilidade, persisténcia, gerenciamento de alocag8o

secundaria, concorréncia e facilidade de consultas Ad-Hoc.

Cada uma destas caracteristicas ¢ abaixo detalhada.

1))

2)

26

Objetos Complexos : Sio construidos a partir de objetos simples ¢ da aplicagéo
de construtores sobre eles. Os objetos mais simples sio os objetos como integers,
chars, cadeias de bytes de qualquer tamanho, tipos boolean e floats. Ha vérios
construtores de objetos complexos, como tuplas, sets, bags, listas ¢ matrizes. Sets
sdo importantes porque ¢ a forma mais natural de representar colegdes do mundo
real. Tuplas sdo criticas porque sdo a maneira natural de representar propriedades
de uma entidade. Ambos tém sua importincia porque apresentam grande
aceitagiio como construtores de objetos no modelo relacional. Listas e matrizes
sdo importantes porque podem determinar a ordem na qual o evento realmente
ocorreu, e também tem importincia em muitas aplicagBes cientificas, onde existe
a necessidade de matrizes e a ordenagéo de dados por tempo.

Os construtores de objetos devem ser ortogonais, ou seja, qualquer construtor
pode ser aplicado para qualquer objeto. Os construtores de modelos relacionais
néo s3o ortogonais, porque os construtores de sets podem ser somente aplicados
em tuplas ¢ as tuplas podem ser somente aplicadas para valores atémicos.

O suporte a objetos complexos também requer que as operagoes apropriadas
devam existir para manipuli-los, independente de sua composig¢do. Isto é, uma
operagio em um objeto complexo deve ser propagada para todos seus
componentes. Operagdes adicionais em objetos complexos podem ser
implementadas, pelos usudrios do sistema.

Identidade de Objetos: A identidade de objetos sempre existiu em linguagens
de programagdo, mas o conceito ¢ novo em banco de dados. A idéia é a scguinte :
em um modelo com identidade de objetos, um objeto tem uma existéncia a qual ¢
independente de seu valor. Deste modo surgem dois cenarios ao se manipular
objetos: dois objetos podem ser idénticos (sdo o0 mesmo objeto) ou eles podem
ser iguais (possuem o mesmo valor). Isto provoca duas implicagdes que séo o de

compartithamento de objeto € o de atualizacio de objetos.

27

o Compartilhamento de objetos : em um modelo baseado em identidade, dois
objetos podem compartilhar um componente. Considere-se 0 seguinte
exemplo : uma pessoa tem um nome, idade, ¢ um conjunto de criangas. Peter
¢ Susan, ambos tém um filho de 15 anos chamado John. Duas situagdes isto
poderiam provocar: Susan e Peter sdo pais da mesma crianga ou ha duas
criangas diferentes envolvidas. Em um sistema sem identificagdo, Peter seria
representado como (PETER, 40, {(JOEN, 15, {hh), € Susan seria
representada como (SUSAN, 41, {(JOHN, 15, {})}).

Deste modo, nfo h4 como expressar que Susan e Peter sdo pais da mesma crianca. Em
um modelo com identificagdo de objetos, as estruturas podem compartilhar o mesmo
objeto (JOHN, 15, {}) oundo, identificando assim as duas possibilidades

e Atualizacio de objetos : Assumindo que Susan e Peter sdo realmente os pais
de John. Neste caso, qualquer atualizagio no filho de Susan sera aplicada ao
objeto John e, consequentemente, também ao filho de Peter. Em um sistema
bascado em valores, os sub-objetos devem ser atualizados separadamente. A
identidade de um objeto também & uma primitiva poderosa para manipulagio
de dados que pode ser o basico de set, tuplas e manipulagdo recursiva de
objetos complexos.

Suportar identificagio de objetos implica em oferecer operagles tais como
alinhamento de objetos, copia de objetos (copia superficial ou profunda) e testes para
identificacSes de objetos e igualdade de objetos (igualdade superficial ou profunda).
Dois objetos siio superficialmente iguais se os atributos dos objetos s8o idénticos,
mas esta igualdade ndo é recursiva. Dois objetos sdo profundamente iguais se seus
valores sdo recursivamente iguais. Esta definicio examina os valores de um objeto
recursivamente. O mesmo conceito vale para a c6pia, quando € realizada uma copia
superficial, somente os atributos sdo copiados, mas n#o recursivamente. Quando ¢
realizada uma copia profunda, os atributos recursivos também sdo copiados.

E claro que se pode simular identificagdo de objetos em sistemas baseados em
valores, introduzindo explicitamente identificadores de objetos. Entretanto, este
método transfere a responsabilidade para o usudrio do sistema de garantir unicidade

dos identificadores de objetos e manter integridade referéncia.

28

Vale lembrar que modelos baseados em identificadores sdo comuns em linguagens
de programagfo: cada objeto manipulado em um programa possui uma identificagdo
& pode ser atualizado. Esta identificac8io pode ser definida através de uma varidvel ou
de um enderecamento de meméria. Mas o conceito € relativamente novo em sistemas
relacionais, onde os relacionamentos sfo baseados em valor.

3) Encapsulamento : O conceito de encapsulamento vem (i) da necessidade de
distinguir claramente entre a especifica¢do € a implementagio de uma operagao €
(IL) da necessidade de modularizagdo. A modularizacio é necessdria para
desenvolvimento de aplicagdes complexas e implementadas por um grupos de
programadores. E também & necessiria como uma ferramenta para prote¢do ¢
autorizacao.

As duas formas de visualizar o encapsulamento sio a visio da linguagem de
programagdio e a adaptagdo para banco de dados desta visfio. A visdo da linguagem
de programagio & a visdo original pois o conceito foi originario nesta camada.
O encapsulamento em linguagens de programagcio tem destaque na defini¢fo de tipos
de dados abstratos. Um objeto possui uma interface ¢ possui uma implementacdo. A
parte da interface consiste na especificagdo de um conjunto de operagles que podem
ser executadas no objeto. Apenas parte do objeto é visivel. A parte de implementacéo
possui os dados e os procedimentos. A parte de dados é a representago ou estado de
um objeto ¢ a parte de procedimento descreve, em alguma linguagem de
programacio, a implementacio de cada operagéo.

A implementagdo do encapsulamento no banco de dados representa que o objeto

encapsula os dados € o programa. Em um banco de dados, ndo esta claro se a parte

estrutural de um tipo ¢ ou ndo parte da interface, enquanto que em linguagens de

programacio, a estrutura de dados ¢ parte da implementagfo e ndo da interface.

29

Considere, por exemplo, um Empregado. Em um sistema relacional, um empregado €
representando por algumas tuplas. A consulta ¢ feita utilizando uma linguagem
relacional, € posteriormente, um programador escreve um programa para atualizar
este empregado quando o mesmo tiver aumento de salario ou for demitido. Isto €
geralmente escrito utilizando-se uma lingunagem de programagdo com comandos
DML, ou em uma linguagem de programagéo de quarta geragio e sdo armazenados
em programas € nio no banco de dados. Deste modo, hd uma clara distingdo entre
programa e dados, e entre a linguagem de consulta (consultas Ad-Hoc) ¢ a linguagem
de programaco (os programas da aplica¢do).

Em um sistema orientado a objetos, o empregado pode ser definido como um objeto
que possui uma parte de dados (provavelmente muito similar com aquela estrutura
definida em um sistema relacional) ¢ uma parte de operagdes, a qual consiste das
operago de aumento de salario e demisséo ¢ qualquer outra operagdo para acessar
dados do Empregado. Quando se armazena a estrutura de um empregado, dados e
operagdes sdo armazenadas no banco de dados.

Assim, h4 somente um modelo simples para dados e operagGes, € informagdes
podem ser escondidas. Nenhuma operagéo, além daquelas especificadas pela
interface, pode ser realizada. Esta & a restrigio que se impde sobre operagdes de
atualizagfio ¢ recuperagdo de dados.

O encapsulamento fornece uma forma de “independéncia logica de dados™, podendo
ser alterada a implementagéio de um tipo sem mudar qualquer programa que utiliza
aquele tipo. Assim, os programas sio protegidos de mudangas de implementagdo em
baixas camadas do sistema.

O encapsulamento adequado é obtido quando somente as operagdes sio visiveis e os
dados e a implementagdo das operagdes sfio escondidas no objeto.

Entretanto, ha alguns casos onde o encapsulamento ndo ¢ necessario, € 0 uso do
sistema pode ser significativamente simplificado se o sistema permitir que o
encapsulamento possa ser violado sobre algumas circunstincias. Por exemplo, com
consultas Ad-Hoc a necessidade de encapsulamento é reduzida desde que questoes
como sustentabilidade ndo sejam importantes. Assim mesmo, um mecanismo de

encapsulamento deve ser fornecido pelo SGBDOO, mas aparecer somente em €asos

onde sua execugio ndo é apropriada.

30

4) Tipos e Classes : Esta caracteristica 6 sensivel : ha duas caracteristicas principais
dos sistemas orientados a objetos, aquelas que suportam a nogao de classes ¢
aquelas que suportam nogdes de tipos. Nesta primeira caracteristica, pode-se citar
sistemas como SmalTalk, Gemstone, Vision, ¢ mais gencricamente todos os
sistemas da familia SmalTalk, Orion, Flavors, G-Base, Lore € mais
genericamente ainda todos os sistemas derivados do Lisp. Em uma segunda
categoria, nés encontramos sistemas como C++, Simula, Trellis’fOwl, Vbase ¢
02.

Um tipo, em um sistema orientado a objetos, resume as caracteristicas comuns de um

conjunto de objetos com as mesmas caracteristicas. Isto corresponde a nogéo de um

tipo de dados abstrato. Ha duas partes: a interface e a implementagdo (ou
implementagGes). Somente a parte da interface € visivel para os usuérios do tipo, as

implementagdes de um objeto séo vistas somente pelo projetista daquele tipo. A

interface consiste de uma lista de operagdes reunidas com suas marcas (por exemplo,

o tipo dos parimetros de entrada e o tipo de resultados).

A implementagio de um tipo consiste de uma parte de dados e uma parte de

operagdes. Na parte de dados, descreve-se a estrutura interna dos dados do objeto.

Dependendo do poder do sistema a estrutura da parte de dados pode ser mais ou

menos complexas. As partes da operacfo consistem de procedimentos os quais

implementam as operagdes da parte de interface.

Em linguagens de programagéo, tipos sdo ferramentas para aumentar a produtividade

dos programadores, garantindo precisdo nos programas, forcando o usudrio a

declarar os tipos das varidveis a expressGes manipuladas, as razSes do sistema sobre

precisdo dos programas baseado nas informagSes digitadas. Se os tipos do sistema
forem cuidadosamente projetados, o sistema pode executar verificagdo de tipos em
tempo de compilagio, caso contrdrio isto deve ser postergado do tempo de
compilagfio. Assim, tipos sdo principalmente usados em momento de compilagio
para verificar a precisdo dos programas. Em geral, em sistemas baseados em tipos,
um tipo ndo é um “cidaddo de primeira classe” e tem um estado especial e ndo pode

ser modificado em tempo de execugéo.

31

A definigdo de classe ¢ diferente do tipo. Sua especificagfio é o mesmo que o tipo,
mas € mais no sentido de tempo de execugfio. A classe contém dois aspectos: um
fabricador de objeto e um deposito de objeto. Um fabricador de objeto pode ser
usado para criar novos objetos, realizando a operagiio new na classe, ou clonando
algumas representacdes de protétipos de objetos da classe. O depdsito de objeto
significa que junto a classe estd sua extensdo. Por exemplo, o conjunto de objetos sdo
as instincia de uma classe. O usuério pode manipular o depdsito aplicando operagBes
em todos os elementos da classe. Classes ndo sdo utilizadas para verificar a precisio
de um programa, mas certamente para criar ¢ manipular objetos. Em muitos dos
¢4s0s em que se emprega o mecanismo da classe, classes sdo o “cidaddo de primeira
classe” e, tais como, podem ser manipuladas em tempo de execugdio, como por
exemplo, atualizagéio ou passado como pardmetros. Em muitos dos casos, enquanto
se propicia sistemas com aumento de flexibilidade ¢ uniformidade, isto provoca
verificagfio de tipos de tempo de compilagio impossivel.

E claro, hd grandes similaridades entre classes e tipos, nomes tém sido usando com

mesmo significado e as diferengas pode ser sutis em alguns sistemas.

5) Hierarquia de Classes ou Tipos : a heranga tem duas vantagens : é uma
ferramenta poderosa para modelagem, por que propicia uma concisa e precisa
descri¢do do mundo real e ajuda na divisio de especificagdes compartilhadas e
implementagdes na aplicagéo.

Um exemplo pode ajudar a ilustrar o interesse em ter um sistema que propicie o
mecanismo de heranga. Supondo que existam Empregados ¢ Estudantes. Cada
Empregado tem um nome, uma idade acima de 18 anos e um salario, 0 mesmo pode
morrer, casar e receber salarios. Cada Estudante tem uma idade, um nome e um
conjunto de notas, 0 mesmo também pode morrer, casar ou conseguir seu diploma.
Em um sistema relacional, o Administrador de Dados define um relacionamento para
o Empregado, um relacionamento para o Estudante, programa as operagdes de
Morte, Casamento e Pagamento para o Empregado, ¢ também programa as operagdes
de Morte, Casamento ¢ Graduagdo do Estudante. Deste modo, o desenvolvedor teve

que escrever 6 programas.

32

Em um sistema orientando a objetos, usando a propriedade de heranca, é possivel

definir que Estudantes e Empregados sfio Pessoas, pois os mesmos possuem atributos

em comum e oufros que sdo especificos. Pode ser criado um tipo nomeado Pessoa,
que possui os atributos Nome e Idade e serem escritas as operagbes de Morte

Casamento para este tipo. Assim, pode-se declarar que os Empregados sfio um tipo

especial de Pessoa, que herdou os atributos e as operagdes, € ainda possui atributos

adicionais como Saldrio ¢ uma operagiio Pagamento. Da mesma forma, é declarado

que o Estudante € um tipo especial de Pessoa, com um atributo Conjunto-de-Notas e

uma operagdo especial nomeada Graduacgfo. Desta forma, temos uma estrutura

melhor e uma descrigdo mais concisa de um esquema (redugdo das especificagdes)

tendo sido necessério escrever somente 4 programas (reducdo da implementacio)., A

heranga também auxilia a reutilizagio do cédigo, porque todo programa estd em um

nivel que o maior nmero de objetos pedem compartilhar.

6) Overrinding, Overloading e Late Binding : Em contraste com o exemplo
anterior, ha casos onde se faz necessdrio utilizar o mesmo nome para operagdes
diferentes. Considere, por exemplo, a operagdo Display: ela recebe um objeto
como argumento e mostra o objeto na tela. Dependendo do tipo do objeto,
podemos querer utilizar diferentes mecanismos para mostri-lo na tela. Se o
objeto € uma figura, pode-se querer que a mesma apareca na tela. Se o objeto é
uma Pessoa, pode-se querer que as informagdes da linha sejam mostradas.
Considere o problema de mostrar um conjunto, onde o tipo de seus membros s&o
desconhecidos em tempo de compilagio.

Em uma aplicagdo que use o sistema convencional, ha trés operagdes: Display-

Pessoal, Display-Figura e Display-Grafico. O programador ir4 testar o tipo de cada

objeto do conjunto e usar a correspondente operagio de DISPLAY. Isto faz com o

que o programador tenha a preocupagio de verificar todos os tipos de objetos

possiveis em um conjunto, programar a operagio de Display daquele tipo ¢ usa-lo

corretamente,

33

FOR X IN X DO
BEGIN
CASE OF TYPE (X}
PERSON : DISPLAY(X):
BITMAP : DISPLAY-BITMAP(X}:
GRAPH : DISPLAY-GRAPH (X);
END;
END

Em um sistema orientado a objetos, ¢ definida a operagdo de Display no nivel do tipo
de objeto. Deste modo, a operagiio Display tem um dnico nome e pode ser utilizada
indiferentemente em Graficos, Pessoal e Figuras. Entretanto, ¢ redefinida a
implementacdo da operag¢do de cada um dos tipos de acordo com cada tipo, isto é
chamado de Overriding. Isto resulta em um unico nome (Display) reportando 3
diferentes programas, isto é chamado de Overloading. Para mostrar um conjunto de
elementos, simplemente ¢ aplicada a operagdo Display para cada um deles, e deixar
que o sistema execute a implementagfo apropriada que serd determinada em tempo

de execucio.
FOR X IN X DO DISPLAY (X)

Aqui temos uma vantagem diferenciada: o implementador de tipos ird escrever o
mesmo numero de programas, mas o programador da aplicagdo ndo terd que se
preocupar com 3 tipos diferentes de programas. Complementando, o codigo é mais
simples e ndo ha necessidade programar operagdes do tipo CASE. Finalmente, o
codigo ¢ de manutengéo mais fécil pois quando um novo tipo e nova instancias de
um tipo sdo adicionadas, o programa Display continuard a trabalhar sem
modifica¢des (devido ao fato que uma operagio de Override mantém o método
display para aquele tipo).

Para prover estas novas funcionalidades, o sistema nfo consegue associar nomes de
operagdes com programas em tempo de compilagdo. Por esta razdo, os nomes das
operac¢bes devem ser resolvidas em tempo de execugio, traduzido em enderecamento

de programas. Esta tradugdo atrasada é chamada de LateBinding.

34

7) Perfeicio Computacional : A partir do ponto de vista da linguagem de
programacio, esta propriedade & &bvia: simplesmente significa que pode ser
expressa qualquer funcfio computacional, usando as fungdes DML do sistema de
banco de dados. Apartir do ponto de vista do banco de dados, isto é uma
inovagdo, uma vez que a linguagem SQL n#o é completa.

Isto nfo significa que desenvolvedores de bancos de dados orientados a objetos

desenvolvam uma nova linguagem de programagio: a perfeicio computacional pode

ser implementada através de uma conexfio com linguagens de programacio ji
existentes.

Note que isto € diferente de ser “completo de recursos”, por exemplo, sendo possivel

utilizar todos os recursos do sistema (tela e comunicagio remota) a partir de dentro

da linguagem de programacdo. Portanto, o sistema, mesmo tendo perfeicio
computacional pode nio ser capaz de executar uma aplicagdio por completo, Isto,

entretanto € mais que um sistema de banco de dados que somente armazena e

recupera dados e realiza operagdes simples em valores atémicos.

8) Extensdio : O sistema de banco de dados ja possui uma série de tipos pré
definidos. Estes tipos podem ser utilizados pelos programandores para escrever
suas aplicagdes. Este conjunto de tipos deve ser extensivel no seguinte sentido:
héd uma maneijra de definir novos tipos e ndo h4 distingdio de utilizagio entre os
tipos definidos pelo sistema e os tipos definidos pelo usudrio. E claro, haverd
uma diferen¢a na maneira que os tipos do sistema e os tipos definidos pelo
usudrio sdo suportados. Esta defini¢do de tipos também inclui a definicio de
operagdes nos tipos. Repare que os requisitos de encapsulamento implicam que
had mecanismos para definigio de novos tipos. Este requisito fortacele esta
capacidade de que tipos novos devem ter.

Entretanto, ndo se ¢ requerido que a colegfo de construtores de tipos (tuples, sets,

lists, etc.) scjam extensiveis.

35

9) Persisténcia : Este requisito é evidente do ponto de vista do banco de dados, mas
recente do ponto de vista da linguagem de programacdo. Persisténcia € a
habilidade de que o dado continuara existindo apds a execugio de um processo,
para ser reutilizado por outro processo. A persisténcia deve ser ortogonal, isto
quer dizer, para cada objeto, independente de seu tipo, pode ser permitido se
tornar persistente. Isto também deve ser implicito: o usudrio ndo deve ter que
explicitamente mover ou copiar dados para torna-lo persistente.

10) Gerenciamento Secundirio de Armazenamento : Esta é uma caracteristica
cléssica de um sistema de gerencimento de dados. E normalmente suportada
através de um conjunto de mecanismos. Isto inclue gerencimento de indices,
cluster de dados, buffer de dados, sele¢fio de caminhos de acesso ¢ otimizagio de
consultas.

Nenhuma destas caracteristicas estd visivel ao usudrio: elas sfo caracteristicas

simplificadas de desempenho. Entretanto, elas sfo tdo criticas em termos de

desempenho que sua auséncia tornaria o sistema incapaz de executar algumas tarefas

(simplemente porque elas iriam tomar muito tempo). O ponto mais importante € gue

estas caracteristicas sfo invisiveis. O programandor da aplicacfio ndo deve ter que

escrever codigos para manter indices, alocar espago em disco, ou mover dados do
disco para memoria principal. Assim, haveria uma clara independéncia entre o nivel
logico e fisico do sistema

11) Concorréncia : Com relagdo ao gerenciamento da interacdo de multiplos
usuarios concorrentes com o sistema, deve-se oferecer o mesmo nivel de servico
que os atuais sistemas de banco de dados propiciam. Isto deverd garantir um
harmoniosa coexisténcia entre os usudrios trabalhando simultaneamente com o
banco de dados. O sistema deve suportar a nogio padrdo de atomicidade da
seqiiéncia de operacdes e de controle de compartilhamento. Serializagio de
operagdes deveria ser oferecida, embora alternativas menos rigorosas possam ser

oferecidas,

36

12) Recuperacio : Novamente, o sistema deve prover o mesmo nivel de servigo que
0s atuais sistemas de banco de dados. Portanto, em caso de falha de hardware ou
software, o sistema deve realizar a recuperagio, como por exemplo, voltar o
sistema para algum estado coerente dos dados. Falhas de hardware incluem
falhas de processador ou falhas de disco.

13) Facilidades de Consultas Ad-Hoc : Um dos principais problemas é propiciar a
funcionalidade de linguagens para consultar Ad-Hoc. Néo ¢é requirido que isto
seja feito na forma de uma linguagem de consulta mas um servigo deve ser estar
disponivel. O servigo consiste em permitir que o usudrio formule simples
consultas para um simples banco de dados. A comparagio Gbvia é com o sistema
relacional, e assim o teste € usar um ndmero representativo de consultas
relacionais e verificar se eles podem ser determinados com a mesma quantidade
de trabalho, Esta facilidade deve ser suportada pela linguagem de manipulagdo
ou um sub-grupo dela.

As consultar devem satisfazer os seguintes critérios : (i) Devem ser de alto nivel, ou

seja, serem capazes de expressar consultar nfo triviais consistentemente. Isto implica

que deve ser razoavelmente declarativa, ou seja, com enfaze no “o que” e nio no

“como”. (ii) Deve ser eficiente, ou seja, ao se formular uma query deve haver alguma

forma de otimizar tal consulta. (iii) Deve ser independente da aplicacgo, ou seja,

deve funcionar com a mesma sintaxe em diferentes bancos. Este ultimo requisito

elimina facilidades especificas de consultas que sfo dependentes da aplicagfo, ou a

necessidade de escrever operagdes adicionais para cada tipo definido pelo usudério.

37

7. PERSISTENCIA DE OBJETOS

O termo persisténcia como foi comentado, é raramente utilizado no contexto de
bancos de dados, mas é a caracteristicas que define a evolugio do SGBDOO em
relagio as linguagens de programagio orientada a objetos.

Preferencialmente, o termo usado é banco de dados, que conota o espaco de objeto
resiliente, concorrentemente compartilhado. A fungio de um sistema de
gerenciamento de banco de dados é permitir o acesso € a atualizacfio simultaneos de
bancos de dados persistentes. A fim de garantir a persisténcia dos dados a longo
prazo, os sistemas de gerenciamento de banco de dados utilizam varias estratégias de
recuperagio em caso de falhas na transagfo, no sistema ou no meio.

Ha uma relagdo fundamental entre o compartilhamento e a persisténcia simultaneos
de banco de dados. As atualizacdes de transagdes devem persistir, mas como o banco
de dados persistente ¢ ao mesmo tempo acessado ¢ atualizado, o sistema de
gerenciamento de banco de dados deve preocupar-se com a coeréncia dos objetos de
dados persistentes. Isso normalmente & obtido por meio de estratégias de controle e

recuperagdo concorrentes.

38

7.1 NIVEIS DE PERSISTENCIA

Os dados manipulados por um banco de dados orientado a objeto podem ser
transientes ou persistentes. Os dados transientes s6 sfio vélidos dentro de um
programa ou transagio, eles se perdem quando o programa ou a transagiio termina.
Os dados persistentes, por outro lado, sdo armazenados fora do contexto de um
prograrma e assim sobrevivem a virias invocagdes de programas.

Dados persistentes existem nos bancos de dados compartilhados, acessados e
atualizados através de transagdes. Por exemplo, banco de dados pessoais, banco de
dados de inventdrio e banco de dados de vendedores, contas ou itens, todos contém
dados persistentes. No entanto, hd vérios niveis de persisténcia. Os objetos menos
persistentes sdo aqueles criados e destruidos em procedimentos. Depois, hd os
objetos que persistem dentro do espago de trabalho de uma transacfio, mas que sdo
invalidados quando a transagdo termina. As transagdes s3o normalmente executadas
dentro de uma sesséo. O usudrio estabelece seu login e define diferentes parimetros
dentro de uma sess3o, como caminhos, opcdes de exibicHio, janelas, etc. Se o sistema
suportar 0 multiprocessamento, vérias transacdes poderfio estar ativas dentro da
mesma sessdo de usudrio ao mesmo tempo. Todas estas transagdes compartilhardo os
objetos da sessfio. No entanto, quando o usuario terminar a sesso, os objetos da
sessdo serdo invalidados. O tinico tipo de objeto que i)ersiste atraveés das transagdes
sdo objetos permanentes normalmente compartilhados por varios usudrios. Esses
objetos persistem através de transagOes, instabilizacdes de sistema e até de meio.

Tecnicamente, esses sdo os objetos recuperaveis do banco de dados.

39

8. TRANSACOES, CONCORRENCIA, RECUPERACAO E CONTROLE

DE VERSAO

8.1 TRANSACAO

Uma transagio consiste em um trecho de programa que deve ser executado

inteiramente ou entdo nfo ser executado em nenhum de seus subirechos. As

transagGes devem mapear um objeto de um banco de dados de um estado coerente

para outro. Para manter a coeréncia, as transagdes devem passar pelo teste ACID :

Atomicidade, coeréncia, isolamento, e durabilidade.

Atomicidade: Como uma transagiio é exccutada inteiramente ou entio ndo &
executada, ou a seqiiéncia completa de operagdes é aplicada ao banco de dados
ou entdo nenhuma. Este recurso chama-se Atomicidade; as transag¢des devem ser
atdmicas.

Coeréncia: Diz-se que o banco de dados & coerente se todas as suas restrigdes de
integridade s8o satisfeitas. Pressupde-se que na execugdo de uma transa¢fo, na
auséncia de interferéncia de outras transagbes concorrentes, o banco de dados
seja levado de um estado coerente para outro.

Isolamento: Como as transagdes sdo executadas concorrentemente no mesmo
banco dados, elas devem ser isoladas das outras operagdes. Do contrério, a
operagao intercalada de transagdes concorrentes pode levar a anomalias. Assim,
0s sistemas de gerenciamento de dados suportam isolamento, que fornece
seguranga contra interferéncias entre transacdes concorrentes.

Durabilidade: A durabilidade estd relacionada capacidade do SGDB de se
recuperar de falhas no sistema e no meio. As atvalizagdes de uma transagfo
efetivada devem ser preservadas e registradas em algum meio durével. Deve-se
manter redundincia suficiente para que se reconstrua um banco de dados

coerente.

40

Transac¢des aninhadas : As transagdes de aplicagBes de bancos de dados orientados
a objetos sdo normalmente mais demoradas que as de aplicagdo comerciais
convencionais. A longa duragdo das transagdes em aplicagBes avangadas é uma
caracteristica das aplicagBes de bancos de dados da préxima geragfo. Virias
estratégias relacionadas a longa duragfio foram propostas na pesquisa de bancos de
dados. Algumas estratégias influenciaram as implementacdes de bancos de dados
orientados a objetos. As transagdes aninhadas sfo utilizadas para resolver alguns
problemas associados as transagBes de longa duragfio. Um modelo de transacfio
aninhada pode conter sub-transacdes, também chamadas transactes-filhas. Em uma
transagdo aninhada, todas as transa¢@es-filhas devem ser efetivadas para que a
transa¢do de nivel mais alto se efetive. Cada sub-transacio deve ser concluida ou
abortada. Também, em aplicagdes avangadas, as tarefas normalmente envolvem
varios usudrios. As transagles em cooperagio sdo utilizadas para suportar essas

tarefas em conjunto.

41

8.2 CONCORRENCIA

Virios algoritmos de controle podem ser usados para garantir a capacidade de

serializacfio das transagdes e a coeréncia do banco de dados. O mais notavel deles é o

bloqueio. Nos bancos de dados orientados a objetos, o bloqueio pode ser associado a

varios grinulos que sdo manipulados pelos usudrios, incluindo classes, instincias e

objetos complexos.

Nos bancos de dados orientados a objetos, hd dois aspectos de bloqueio que sdo

relevantes para o compartilhamento concorrentes de objetos :

Bloqueio de hierarquia de classe : As classes nos bancos de dados orientados a
objeto sdo organizadas em hierarquias de heranga, de modo que cada classe da
hierarquia tenha uma extensfo ou insténcia pré existente. Por isso ¢ importante
fornecer bloqueio de granularidade a essas estruturas. Por exemplo, uma
superclasse poderia bloquear implicitamente todas as subclasses no mesmo modo
de bloqueio. As subclasses incluem os descendentes diretos da superclasse e os
descendentes de suas subclasses.

Bloqueio de Objeto complexo : Os bancos de dados orientados a objetos contém
objetos que podem referenciar ou incorporar outros objetos. Além disso, alguns
objetos sdo “valores”, enquanto outros possuem identidade. Para otimizar a
concorréncia na presenga de modelos que envolvam objetos complexos, foram
analisados varios esquemas de bloqueio de “objetos compostos” ou de “objetos

dependentes™ para objetos complexos.

42

8.3 RECUPERACAO

A confiabilidade e a pronta recuperagfio de falhas sio importantes recursos de um
sistema de gerenciamento de banco de dados. O gerenciador de recuperaciio é o
modulo que administra as técnicas de recuperaciio dessas falhas. Os trés importantes
tipos de falhas que s#o responsabilidade do gerenciador de recuperacio sdo: as falhas
de transag8o, as falhas no sistema, as falhas no meio.

Uma das estruturas mais utilizadas para o gerenciamento de recuperagéo é o histdrico
de falhas. O histérico de falhas ¢ utilizado para registrar € armazenar as imagens
anteriores e posteriores dos objetos atualizadas. A imagem anterior é o estado do
objeto antes da atualizac@o da transagfo, € a imagem posterior é o estado do objeto
apés a atualizac@io da transagiio. Quase todos os SGDBOO utilizam o registro de
operagdes para a recuperagio do banco de dados a um estado coerente. Alguns

utilizam a duplicaggo ou espelhamento de dados.

43

8.4 CONTROLE DE VERSAO

O acesso a estados anteriores ou a estados alterados de objetos € parte inerente de
muitas aplicagdes. Ele é obtido por meio de virias versbes do mesmo objeto. O
gerenciamento de versdo em um banco de dados orientado a objetos consiste em
ferramentas e construgdes que automatizam ou simplificam a construgio e a
organizagdo de versdes ou configuracies. Sem essas ferramentas, caberia ao usuério
organizar e manter as versdes.

Podemos considerar a configuragfio como um grupo de objetos tratados como uma
unidade para blogueio e controle de versdes. Os objetos individuais dentro da
configuragdo podem sofrer modificacdes, de modo que cada objeto pode ter um
historico das versdes. Virios objetos dentro da configuragfio sfo atualizados em

momentos diferentes e nfio necessariamente na mesma freqiiéncia.

44

9. PADROES DE CONSULTAS DE OBJETOS

Wade faz uma descri¢io sobre o esforgos realizados para defini¢io de um padréio das
consultas OQL. Vérios grupos tém trabalhado no sentido de criar e definir os padrdes
para consultas SQL acessando os objetos, através da linguagem chamada OQL (
Object Query Language). Entre estes grupos destacam-se o0 ODMG, OMG, ANSI
X3H2 (SQL3).

9.1 O QUE E DIFERENTE AO CONSULTAR OBJETOS ?

A introducio de objetos dentro de bancos de dados trouxe uma série de novas
questoes. De fato, isto trouxe a necessidade de novos tipos de interfaces. Como
complemento para a ja familiar declaragio da linguagem de consulta, o tratamento de
objetos apresenta a possibilidade de integrar a interface com a linguagem de objetos,
assim 0s objetos usados nas linguagens podem ser manipuladas automaticamente
pelo banco de dados. Isto permite ao programador um integraciio com uma
linguagem de objetos e evitar tradugio entre estruturas do banco de dados e as
estruturas da linguagem. Além disso, a linguagem para defini¢io de objetos é
incrementada permitindo muitas diferentes tipos de estruturas. Finalmente, a
linguagem de consulta também permite acesso a diferentes tipos de estruturas. Assim
ha possibilidades de interfaces para defini¢io de tipos, de comsultas, ¢ para
integracio com linguagens de programacio orientado a objeto, tudo com
aumento significativo da variedades de tipos.

Mais que a diferenca na estrutura, a natureza fundamental dos objetos apresenta
novas capacidades que devem ser enderegadas pode estes 3 tipos de interface. Dentre
estas capacidades, inclui :

¢ Encapsulamento (operagdes)

e Identidade

¢ Referéncias

e Colecdes

45

Uma diferenga basica entre um objeto € os dados tradicionais ¢ que o objeto também
inclui operagdes. O usuério do objeto pode invocar estas operagdes e pode acessar
externamente informagSes visiveis, os chamados atributos. Ambas operagdes que
podem ser implementadas usando informages internas que sfo invisiveis
externamente. A defini¢dio do tipo para o usudrio externo, entfio, deve incluir a
especificagiio do atributo e da operacfio. Para implementar objetos deve existir uma
maneira para especificar a implementacgdo de operagdes e da mesma forma qualquer
informac#o interna.

Outra diferenga ¢ a identidade. Bancos de dados tradicionais armazenam somente
dados. Os dados podem ser consultados e modificados por associagio (por valor), €
usudrio pode criar chaves baseado-se nestes valores para localizar registros
desejados. Com objetos, o sistema mantém o conceito de identidade. Mesmo se todas
os valores dos atributos do objeto mudarem, o usuério pode ainda acessar o mesmo
objeto pela geragio interna e gerenciamento de identificadores de objetos (OIDs), e
0 usuario pode solicitar ao sistema verificar se dois objetos sdo de fato o mesmo (
operacio de identidade). As interfaces dos objetos do banco de dados, devem prover
alguns mecanismos para acessar estas identidades.

Além do usudrio ter acesso a atributos de objetos visiveis externamente e a
operagbes, hd outra caracteristica caracteristicas que sdo visiveis e acessadas
externamente do objeto, as relagdes entre objetos. Para relacionamentos binarios, um
relacionamento simples, um-para-um pode ser visto como um atributo de objetos
com valores de dois objetos relacionados. Relacionamentos muito-para-muitos
podem ser vistos como colegio de objetos de valores. A interface para defini¢io de
tipos deve suportar uma maneira para declarar tais relacionamentos, e as interfaces
de consultas e linguagem deve suportar meios de criar, remover e associar

relacionamentos.

46

Cole¢des podem ser vistas como atributos de multiplos valores, onde valores
individuais, ou membros da colegdio, consistem de varios, possivelmente complexos,
tipos de dados, tais como objetos. Vérios sub-tipos de colegBes sdo possiveis,
incluindo um bag, um set, uma list, um array, todos podendo variar de tamanho
dinamicamente. Novamente, a linguagem de definicio de tipos deve prover uma
maneira de definir tais colegBes, e as interfaces das linguagens de consulta e dos

objetos deve prover uma forma de criar, remover, consultar e atualizar tais colecdes.

47

92 ODMG

Object Database Management Group (ODMG), um consércio de fornecedores de
banco de dados orientados a objetos, criou todas as 3 interfaces descritas acima para
propor-las a0 OMG (Object Management Group), ANSI (American National
Standards Institute), ISO (International Standards Organization) e outras
organizagfo relevantes. Em particular, o ODMG-93 contém 4 interfaces :

» Object Definition Language (ODL)

e Object Query Language (OQL.)

¢ Compatibilidade com CH++

¢ Compatibilidade com SmalTalk

Para a interface para uma linguagem de objetos, 0 ODMG escotheu usar linguagens
pré-existentes, como a C++ e a SmalTalk, e associa-las com o modelo de objetos do
banco de dados, desta forma os programadores destas linguagens podem definir
objetos normalmente, € o banco de dados ira suporta-los automaticamente,

Para definicdo de objetos, a ODMG iniciou com a Linguagem de Defini¢io de
Objetos (IDL) da OMG, e adicionou capacidades extras necessarias ao sistema de
gerenciamento de dados, incluindo declaracbes de objetos, relacionamentos bi-
direcionais n-para-n, chaves e extents. Combinando com as habilidades do IDL para
déﬁnir atributos e operagles, isto permite definir qualquer tipo de objeto. Como
todos os adicionais a linguagem de definicdo de interfaces sfo definidas
semanticamente equivalente para os métodos gerados, todos os objetos definidos pela
ODL produzem interfaces IDLs, sendo assim acessiveis para todos os padrSes do
mundo OMG, incluindo o CORBA, os Servicos de Objetos e as Facilidades dos
Objetos.

A Figura 5 ilustra como as interfaces ODMG interagem com o sistema de

gerenciamento de banco de dados.

48

Declaragdo em Codigo do
ODL ou PL ODL Aplicativo em PL

Compilador PL

Aplicacéo Binaria

Declaragiio

Pré processador

ey o o

ODBMS

Acesso aos dados

Database < > Aplicativo Rodando

Figura 5 — Usando 0 ODBMS com ODMG

Para consultas, ODMG adotou as capacidades de consulta basicas do SQL-92 (
algumas vezes conhecidas com o apelido SQL2), o j& conhecido e tradicional
comando SELECT, e adicionou a habilidade em aplicar consultas para qualquer
objeto ou colegdo de objetos, ¢ a habilidade de invocar métodos a partir das
consultas. Isto é definido por uma simples e limitada, linguagem funcional de tipos.
Os tipos resultante de uma consulta pode ser um tipo escalar (incluindo tuplas), um
objeto, ou uma coleg@io de objetos, com regras de combinagio de tipos especificando
quais operagdes cada tipo produz com outro. A invocagfio de operagBes &
sintaticamente a mesma da referéncia a atributos, com a op¢fio de incluir parimetros
a invocagio. Relacionamentos horizontais sdo implementados através do ponto (a..b).
Também foi adicionado a sintaxe para definicio de colecSes, incluindo lists, sets,
bags ¢ arrays.

Na seqiiéncia encontra-se uma série de exemplos da implementagfio da linguagem
SQL2 baseando nas defini¢tes do ODMG aplicado para objetos.

® SELECT X FROM X IN FACULTY WHERE X.SALARY < X.DEPT.CHAIR.SALARY

¢ SORT 5 IN
{SELECT STRUCT (NAME:X.NAME, S:5.58A)
FRCM X IN FACULTY

49

WHERE FOR ALL Y ON X.ADVISSES:Y.AGE < 25) BY S.NAME

e CHAIR.SALARY
® STUDENTS EXCEPT TAS
* LIST (1,2) + LIST (COUNT (JSE.ADVISEES), 1+2)
e EXISTS X IN FACULT[1:N]: X.SPOUSE.AGE < 25
Exceto pelas implementagBes para se tornar compativel com os objetos, como
relacionamento horizontal, parimetros para operagdes e colegdes, OQL é muito
similar com as consultas READ-ONLY do SQL2, o comando SELECT. Na versdo
V1.2, ODMG procurou tornar o OQL completamente compativel com o SQL2 de
modo que qualquer consulta valida em SQL2 deve ser uma consulta OQL valida,
com a mesma sintaxe, semintica, ¢ resultados. Infelizmente, as linguagens ndo se
tornaram compativel para todos os casos. H4 alguns casos em que uma consuita QQL
¢ uma consulta sintaticamente idéntica em SQL2 irfo produzir resultados diferentes.
SQL2 sempre ird trabalhar em tabelas, mas OQL pode produzir cole¢des. Por
exemplo, a consulta abaixo

SELECT F{X) FROM R X WHERE P (X)
retorna uma tabela do tipo

MULTISET (ROW(TYPE{F (X}}))
enquanto o OQL retornard

MULTISET (TYPE (F (X)))

Por causas destas excegdes, ODMG fez uma pausa em tentar tornar o OQL

totalmente compativel com SQL.

50

9.3 OMG

O Object Management Group (OMG) é um conséreio de empresas que defini as
especificacSes de interfaces para que se permita a interoperabilidade enter objetos e
ferramentas de objetos. O grupo comegou com a definicio do CORBA, uma
interface que permite que operagdes de objetos remotos possam ser invocadas. Cada
objeto registra nos dispatchers dos CORBA as operagdes que eles suportam por meio
de IDL. Entdo o OMG adicional defini¢Ges de interfaces para diversos servigos, cada
de em conformidade com a sintaxe do IDL. Entre estas interfaces, temos:

e Nomeacgdo

¢ Persisténcia

¢ Relacionamento

e Transacdes

¢ Consultas

O OMG tem trabalhando com a ISO Open Distributed Processing { ODP) para
colocar sua interface CORBA com o processo formal de padronizagio.

Diversos servigos do OMG sobrepdem o dominio do sistema de gerenciamento de
dados. Na verdade, o sistema de gerenciamento de dados pode ser visto como o
fornecedor destes diversos servicos do OMG, todos juntos em um pacote, de modo
que 6 pacote também inclui recuperagio, buffer e indices para desempenho. Outra
forma de ver a relagéo entre 0 OMG e o sistema de gerenciamento de dados é vé-lo
como uma camada. O servigo de transagSes do OMG, por exemplo, é compativel
com o protocolo X/Open X/A para realizar two-phase commit, que é usado por
gerenciadores de transagdes para coordenar transagbes atdmicas entre multiplos
sistemas de gerenciamento de dados ¢ outros gerenciadores.

O servigo de persisténcia propicia uma interface que permite a um cliente requisitar
que um objeto seja persistente, incluindo armazenar o estado atual do objeto ou
recuperar um estado armazenado previamente. O servigo de persisténcia inclui outros
SErvigos, como :

¢ Persistent Object Manager (POM): ¢ a interface entre o cliente ¢ o objeto que

estd sendo armazenado.

51

* Persistent Identity Service (PID): servico que gera os identificadores para ser
utilizado pelos clientes para futuras recuperagdes

* Persistent Data Store (PDS): servigo que interagem com o banco de dados e é
responsavel por manter as informacdes do objeto

O protocolo de comunicagdo enfre o servigo POM e PDS permite que as informagdes

possam residir em diferentes meios, como em arquivos seqiiéncias ou em um banco

de dados relacional, enquanto o PDS utiliza a interface ODMG-93 para que o objeto

que esta sendo manipulado seja armazenado como objeto, em um SGBD que suporte

a interface de objetos.

A figura 6 ilustra o relacionamento entre estes servigos.

Client

v

PO e PID

Protocolo I_ POM

h 4
PDS

.

SGBD

Figura 6 - OMG — Arquitetura do Servigo de Persisténcia

A especificagiio do OMG Query Service define servidores de consultas aninhadas e
ligadas. O usudrio envia uma consulta para um servidor de consultas, o qual passa as
sub consultas para outros servidores de consultas. Assim, se uma sub consulta se
aplica a objetos armazenados no banco, o SGBD pode executi-la diretamente usando
qualquer mecanismo de otimizagdo que ele tenha. A consulta de nivel mais alto
monta os resultados de todas as sub consultas, faz a avaliacio dos predicados das
consultas e retorna o resultado, que pode ser um tipo escalar OMG, um objeto, uma
colegdo de objetos, para o usudrio. A figura 7 ilustra como estes servidores de

consulta se interagem.

32

Object Evaluator

Query Evaluator

Query Evaluator

Native Query System

Objects

Figura 7 - OMG - Query Service Architecture

A linguagem utiliza para expressar a consulta pode ser qualquer linguagem

combinada entre o servidor e o cliente. A linguagem deve utilizar a sintaxe dos

objetos segundo a OMG. A especificagdo requer entretanto que ela seja compativel

€om 0s seguintes itens :

¢ Que seja uma derivagdo do SQL2 (similar com SELECT mais INSERT,

UPDATE e DELETE): para que seja compativel com maioria das ferramentas de

consulta que j4 existem no mercado.

* OQL: para que a linguagem seja compativel com a funcionalidade de objetos

® Uma variagdo do OQL, restrita para consultas simples, mas que inclua operacfes:

para permitir o uso de outros servigos do OMG que precisam de uma linguagem

simples para avaliagio de predicados, que inclua a capacidade de invocar

operagoes.

O OMG continua a trabalhar em outras 4reas relevantes com o SGBD.

53

94 SQL3
ANSI X3H2, em cooperagdo com ISQ/IECITCI/SC21/WG3 DBL, trabalhou no que

foi considerado um novo padrio para consultas, que foi nomeado de SQL3. Esta
versdo inclui novas capacidades, e as mais significantes sio: funcionalidade de
objetos, e uma Linguagem Computacional Completa (PSM).

A adogo do PSM propicia uma linguagem completa, com controle de fluxo,
operagdes procedurais, e resolugdo de fungdes. Isto € diferente do escopo do OMG e
ODMG. Ao invés de criar sua prépria linguagem, mapeou linguagens que ja existem
no mercado, como C++ e SmalTalk. Mas nfio ha conflitos, uma vez que 0S grupos
OMG e ODMG esperam adicionar outras linguagens no futuro. Assim o OMG e o
ODMG poder4 criar associagdes com e s6 tornarem-se compativel com o PSM o
SQL3.

A adogdo da capacidade de trabalhar com objetos inclui a habilidade para definir e
acessar Abstract Data Types (ADTs), os quais tem praticamente as mesmas
funcionalidades dos objetos OMG ¢ ODMG, incluindo acesso aos atributos externas
visiveis e operagdes. A linguagem propria do SQL3 (PSM) & usado para implementar
as operagdes e atributos internos dos objetos. O objetivo é permitir que existam
objetos em linhas das tabelas. Estas linhas poderiam conter ADTs. O mecanismo
para identificar ADTs em outras linhas existe, e assim & possivel identificar um valor
timico como uma linha, ao invés de fazer procura baseado em valor. Este ¢ o conceito
basico de identidade, semelhante aos PID do OMG e a referéncia de objetos do
ODMG.

Consultas em SQL3 incluem as habilidades das consultas SQL2, acompanhadas com
habilidade adicional para invocar métodos e relacionamentos horizontais. Isto é mais

que as consultas ODMG ou OMG.

54

9.5 ESFORCOS PARA UNIFICACAO

Embora diferentes SGBD e arquiteturas sio desenvolvidas, nfio ¢ desejavel que haja
duas ou mais linguagens de consultas diferentes. Certamente, seria melhor que pelo
menos um nicleo comum declarativo de consulta de linguagem pudesse ser

combinada, ainda permitindo a diversidade de implementac¢des por baixo dela.

Figura 8 — Evolugdio do SQL

READ-ONLY QUERY

Isto € exatamente o objetivo de uma unifio de um grupo de trabalho formando entre
X3H2 e ODMG. Um pequeno grupo tem trabathado juntos procurando um padriio. O
objetivo, como indicado na figura 8, ¢ nfo forgar um modelo ou um padrio qualquer
S€I 0 mesmo que o anterior, mas preferindo procurar uma linguagem comum de
consultas read-only. Um dos fatores que dificulta a padronizagido ¢ a compatibilidade
total com os comandos SQL, é que as consultas OQL manipulam diferentes tipos de
dados, como objetos, cole¢des e nio somente tuplas como € no caso dos comandos
SQL. E importante lembrar que mesmo as consultas SQL ha alguns casos especiais
que ndo estdo completamente padronizados ¢ dependentes do fornecedor do Sistema
de Gerenciador de Dados. Outra questdo que merece atengdo ¢ como ¢ feita a
manipula¢do dos OID, que inicialmente foi armazenado junto com os dados da tabela
mas que sofria alteragBes caso o objeto move-se de lugar. Isto foi enderecado

armazenando apenas referéncias a ADTs nas linhas.

55

10. EXEMPLOS DA LINGUAGEM OQL

O objetivo aqui ndo é descreve todas as caracteristicas da linguagem OQL nem como
cobrir todos extensdes propostas pelos padrses ODMG. Serfio abordados alguns
temas e demostrado como a linguagem OQL atende as consultas. O primeiro produto
comercial a fazer uso da linguagem OQL foi 0 02, baseado-se nos padrbes definidos
pela ODMG. O ODMG langou versdes finais dos padres nos anos 1993 (ODMG
1.0), 1995 (ODMG 1995) ¢ 1997 (ODMG 2.0).

Na linguagem SQL, os resultados de uma consulta s&o sempre tuplas de uma tabela.
Ja no OQL, o resultado pode ser dados atdmicos, estruturas ou colegdes.

O conceito tradicional de tabela do SQL é obtido em OQL através da definigio de
struct..

Ex.:

STRUCT ENDERECO { STRING RUA; LONG NUMERO; DATE DATA ATUAL; }

O resultado de uma consuita OQL pode ser um Bag, um Set ou um List.

Um Bag ¢ o resultado de um consulta sem ordenacio e com linhas duplicadas. Esta
consulta pode retornar um Bag de objetos ou literais.

Ex.:

SELECT P.IDADE FROM PESSOAS AS P

Neste exemplo é retornado um BAG<INTERGER>.

Ja o Set trata-se de um retorno de uma consulta ainda sem ordenacdo, mas sem linhas
duplicadas. E o List trata-se de um retorno ordenado de uma consulta e sem linhas
duplicadas.

O resultado ¢ caracterizado como set<> quando for utilizada a cliusula distinet. O
list< ¢ caracterizado quando & utilizada a clusula order by.

Ex.:

SELECT P FROM PESSOAS P ORDER BY P.IDADE[C..4]

Neste exemplo é retornada uma list<pessoa> com 5 objetos.

Para facilitar o entendimento dos préximos exemplos de consultas OQL, iremos

utilizar o seguinte modelo de objetos :

56

O exemplo serd utilizado para demonstrar como obter relacionamento e jungdes em
OQL. Baseando-se no modelo de objeto, 0 comando OQL abaixo retorna o conjuito
de nomes dos vendedores da filial de nome “Canoas”.
Ex.:
SELECT DISTINCT VEND.NOME
FROM VENDEDORES VEND
WHERE VEND.AFILIAL.NOME=‘CANOAS’
//RELACIONAMENTO IMPLICITC POR EXPRESSOES DE CAMINHO
oU
SELECT DISTINCT V.NOME

FROM FILIAIS F, F.QOSVEND V
WHERE F.NOME = ‘CANOQAS’

Abaixo estd o exemplo utilizando expressdes SQL tradicionais para mostrar a
diferenga entre OQL e SQL.

Ex.:

SELECT DISTINCT V.NOME

FROM FILIAIS F, VENDEDORES V

WHERE (F.NOME='CANOAS’) AND (F.CODFILIAL=V.CODFILIAL)
//RELACIONAMENTO EXPLICITO POR JUNGOES DE CHAVES

Abaixo estd o exemplo utilizando expressdes SQL tradicionais para mostrar a

diferenga entre OQL e SQL. i

O exemplo abaixo exemplifica uma busca com os nomes da filiais nas quais um

vendedor realizou pelo menos uma venda em “13/05/98".

Ex.:

SQL -

SELECT ¥.NOME

FROM FILIAYIS F, VENDEDORES VEND, VENDAS VD

WHERE (VD.DATA=‘13/08/2000') AND {F.COZFILIAL=V.CODFILIAL) AND
(VD.CODVEND=VEND ., CODVEND)

OQL -

SELECT F.NOME

FROM FILIAIS F

WHERE EXISTS (SELECT V FROM F.OSVEND.ASVINDAS V WHERE V.DATA =
*13/05/987)

QU

SELECT V.OVEND,.AFILIAL.NOME

FROM VENDAS V

57

WHERE V.DATA = ‘13/05/98’

O OQL possui uma caracteristica interessante, pois permite o aninhamento do
resultado, facilitando a interpretagio.

Ex.:

SELECT DISTINCT STRUCT (NOME:EMP.NOME, ALTOS EMP: (SELECT S FROM

EMP.SUBORDINADOS S WHEERE S.SALARIO>5000))
FROM EMPREGADOS EMP

O OQL ja tmplementa um recurso que demorou a ser implementado no SQL o

tradicional aninhamento na clausula from, where e having.

Ex.:

SELECT STRUCT (ID:EMP GRAD.IDADE, SX:EMP GRAD.SEXO)

FROM (SELECT EMP FROM EMPREGADOS EMP WHERE EMP.NIVEL=10} AS
EMP_GRAD

WHERE EMP_ GRAD.NOME = “JOSE “

Baseado-se agora no seguinte comando SQL ou OQL, pois a sintaxe ests de acordo

com ambos os padries.

Ex. :

SELECT DISTINCT P.IDADE, P.SEXO
FROM PESSOAS AS P

WHERE P.NOME = “ROBERTQ”

Segundo as definigées do OQL, idade e sexo sdo atributos dos objetos que serfio
resultados da consulta. P.nome acessa e compara o atributo do objeto. Pessoas & o
extent da classe pessoa, ou seja, o conjunto de todos os objetos desse tipo.
Usualmente usa-se varidveis de interagfo. “P” no exemplo é uma varidvel de iteragio
que acessa 0s objetos.

Em OQL nf#o ¢ possivel ter acesso a campos vazios, normalmente definidos como
“nil”. O campo que contém NIL é classificado como UNDEFINED ¢ a consulta
resulta em erro pois UNDEFNIED nfio pode aparecer no resultado. Para tratar isto,
deve ser utilizada uma fungdio para filtrar os dados UNDEFINIED.

Ex.:

SELECT EMP.ENDERECO.CIDADE

FROM EMPREGADOS EMP

WHERE IS DEFINED (EMP.ENDERECC.CIDADE)

A funcdo Is_DEFINED() trata as linhas com enderecos nil. A consulta retorna um

bag apenas com as cidades que foram definidas no banco.

58

Quando se trabalha com RDBMS e SQL, é obrigatério o uso do COMANDO SELECT
FROM ... para ter acesso aos dados da tabela. Em SGBDOO, pode ser usado

diretamente o nome do objeto ou extents.

Ex.:

OBTER O CONJUNTO DE TODAS AS PESSOAS
PESSOAS

OBTER O OBJETO CUJO NOME E SABRINA:
SABRINA

OBTER A IDADE DE SABRINA:
SABRINA.IDADE

A entrada de dados em OQL ndo utiliza a sintaxes INSERT, UPDATE e DELETE.
Deve ser utilizado a sintaxe NOME DO_TIPO(...) para criar uma nova instncia (

objeto) de um tipo/classe.

Ex.:
EMPREGADO (NOME: “JOSE DA SILVA”, SEXO:”M”, DATA NASC:”13/05/50”,
SALARIO:325, CHEFE:PRESIDENTE)

A sintaxes dos comandos de agregagfo difere da sintaxe tradicional do SQL, utiliza-
se a sintaxe <OPER> (EXPRESSAO QUE REPORNA COLECAO>)

Ex.:
MAX (SELECT EMP.SALARIO FRCOM EMPREGADOS EMP)
COUNT { PROFESSORES)
FIRST(SELECT 7

FROM FILIAIS F

ORDER BY F.CALCTOTALVENDASMES (0198)ASC)
LAST(SELECT F

FROM FILIAIS F

ORDER BY F.CALCTOTALVENDASMES (0198)ASC)

59

11. RELACAO DE ALGUNS SGBDOO EXISTENTES NO MERCADO

Abaixo encontra-se uma tabela baseado no trabalho feito por Zand, Collins E

Caviness. Uma analise de alguns bancos de dados orientados a objetos disponiveis no

mercado. Os produtos foram avaliados segundo as seguintes caracteristicas :

1.

10.

11.

12.

13.
14.

Usudrio Primdrio: Representa para qual tipo de usudrio o produto esta
disponivel atualmente

Versionamento: Indica se 0 SGDB possui controle de verses dos objetos
Meétodo de Recuperag¢io: Avalia qual método de recuperacio o produto utiliza
para realizar recuperaciio dos dados

Gerenciamento de Transagdes: Indica se o Sistema de Gerenciamento de
Dados Orientados a Objetos faz o gerenciamento de transagdes

Objetos Compostos: Avalia se 0 SGBD tem a capacidade de criar objetos
compostos, objetos formados por outros objetos

Heranga: Indica se 0 SGBD ¢ capaz de permitir heranca em objetos
Concorréncia: Avalia a capacidade de ser executada transacGes concorrentes
sobre os mesmos objetos

Distribuido: Indica se o SGBD é capaz de realizar transacSes distribuidas, entre
bancos de dados diferentes

Evolucio dindmica: Representa a capacidade do SGBD de suportar evolugio
dindmica entre os objetos

Dados multimidias: Avalia a capacidade de gerenciamento de dados do tipo
imagem, som e video

Linguagem de Interfaces: Documentas as linguagens de interface aceita pelo
SGBD

Relacional ou Orientado a Objeto: Avalia se 0 SGDB tem a capacidade de
orientagdo a objetos ou implementa o método objeto —relacional

Plataforma: Indica em qual plataforma o produto esta disponivel

Distribui¢fio: Indica em qual tipo de mercado o produto esta disponivel

“IvdO

+HDD J +8d00 T0S0 ‘dSI'T*D “++D D 2 D Tvd seoejIa] Jury
SEIPTULA
wig WIS - OBN wig wig wis OEN sope(
eongIsy BollIRUIg
wis wiIs wis wis WIS - uis @ eolueuiqg ogdnjoay
OBN wrs - - wrs OEN = WS OpIMQLIsIq
SO0 S300] NUIwo))
sodr, Z wIg wig wg sypoysodi], ¢ ung sodn ¥ 9SBYJ-0M], BIOUQLIOOUO)
wis wrs i WIS OeN wrs wis wIs BOURIOH
opedIog wig wig opedioy OBN s wIg - 801pfqQ ‘duon)
wig s - wrg ws wrig wrs wig Opdesuel] “Ion
OBSIDA "JOD) opderndnooy
go] wiIg - TOS-dH o 807 307 op SOARITY Op OPORIA
wig opejiury ung wig wrs wrs wrs Wiy OJuUSWRBUOISIOA
sogdesuriy, op seyTeq
OJUSTIBSSI00I] 0} OJUSWIIAYUO,) Op B BIOUBRIOJ,
50 0 SOIOFON USWIOSUUO)) OJUSWIRIOUISK) op SPWRISIS
Anendoo) ‘SI0 ‘SID op -ouasn 9p sewRlsts soapesadoo) ‘opdewiofu] OLIBUILL4
SajuLIquIy WVO/AVD 3P SEWAISIS “AVD/AVD ‘SI0 SejuRIqUIY A/N dVD °p SEWwo)sIg OLIBNS[)
VILXH 19ARSQO
2101§102[q0 20 IMI SIdI SUOISWRD SNAOXH HIOONH dUeAY

09

SOPB(] ap sooueq ap oaneredwo)) — | vjoqe],

SEJINSU0) agep 01e[qO
sope ap woFenSury lopen ¢ 9 "190)
yrgreduron BSOIPOJ seduepnpy ‘seduepnip]
9 sopeAl] ‘lensiA [enstA sopeymrediuo) seduepnjy op OB ap sie1oadsyg
asg J0BJISI] QOEIDIUL 9 SOPBAM] (Jd Op JOPEOYHON JEOIIION 0B3BOUNON - SBORSLISIORIR)
sape sap
[er0I5UmIO)) [erowwo) sodnojoig sodnojorg [BIOIOWIO]) PISIOAIL) EBPISIGAT) sodnojorg OBSINQLISI(T
50d
OHd WLl SWA
‘dd ‘ung ung ung SqH Olddy ‘ung - SNA @ ung - BULIOJEIR[]
- [BUOIOESY = [eUOIOE[DY 00 00 00 OO QO/euoRErRy
ABL[BUIS
VILXH 1A1gq0
91038309[q0 <0 IMIY SIAI SUOISUIRY SNJOXH dIODNH SOUBAY

19

+0 D dSIT +HD D dSIT+HD D +Z0 D dSIT ++D sedrjIeuul “uy]
SEIpI A
0EN wrs wis wIs OEN s CEN sope
BOILIBUL(]
wig 5 = - - wig uls opdnjoay
s wis wig OEN wis s wis opinqrnsi
¥007 ap sodi, ¢ 0]
JoOTeseUd-T JOOTeseyd-z oeqlioy o seiday wig sypoTsodip ¢ sodry, ¥ BIOUQ.LIOOUO,)
wrg wig ws wig OBN s wrg BOURISH
soxojdwo)) soxa[duwon)
wig WS §01[q0 LS $012[q0 wrs OEN sopRlqQ -dwop
wrs wrs wrs wis i s wis ogdesuel], "D
drepdn
- 8071 opay HOBQIOY SJUMISAQON [BOIPOLID v | wig odesodnooy
wrs epeuly OEN wIs wig wis wrg OJUSWEUOISIOA
OJUSWIIOAYUO))
op OJUSTIRIOUSISN)

ap SBUIRISIS OJUSWIUO)) SeIpIu A

‘sooyroadsg op "ouaIen)y ogdrurroyur sagdeuiopuy

BANRIOQO]0D) SEWIOSIS 9P SRUIRISIS ap ‘SIO
BLRqUOTu - IV AVD/AVD CWYD/AVD Seweisis Ty NVD/AYD NVD/AVD oUWl ouensp)

LNVSIHA 01e1S IIMQIEIS SHYDILSOd +Z0 NOIJO SOLNO

29

(ogdenunuo)) sope(op soourg op oAneredwo)) — g gjoge],

SOpeALI] @
sopey[uredwo)
ad ‘seduepnjp sreroadsyg
9p JIopeoynoN 10§ solelqo SeoTSLIv)ORIED)
[eroJowo)) [eIDIOWO)) 591891, ING] sodnojory sodnojorg [BI0IOWIO) [BIDISWIO)) 0BINQLISIT
(009
ung JSITseumbeN OSIM SDd ML NS NNS dH Ung SIWA ‘NS EuLoyeye[d
00 00 [EUOLOB[SY [EUOIOBISY [eUOE[Yy 00 00 QO/TeuoRR[RY
LINVSIHA SOHELS MRS SHYDILSOd +720 NOI-MO SOINO

€9

64

12. CONCLUSAO

Os sistemas de gerenciamento de bancos de dados orientados a objetos estdo
evoluindo gradativamente e assumindo as capacidades das lingnagens de orientagio
a objeto, incorporando-se aos sistemas de gerenciamento de dados. Assumir as
caracteristicas pode tornar a solugiio dependente de uma determinada solugfo, como
a linguagem C, JAVA ou SmalTalk, por isso o trabalho dos consércios de
fornecedores de software ¢ importante para fortalecer o conceito dos SGBDO e
definir um padrdo de modo a atender todas as solugGes de mercado.

Enquanto um padrio nfo for definido, acredito que o sucesso dos SGBDOO estard
comprometido, uma vez que o mercado ja estd acostumado com a versatilidade de
néo ter dependéncia de uma linguagem e que o desenvolvimento seja feito com um
banco de dados especifico, este podemos considerar um dos motivos mais
importantes que tornou tal popular os Sistemas de Gerenciamento de Dados
Relacional.

Atualmente um aplicativo pode ser desenvolvido para operar em diferentes sistemas
de gerenciamento de dados, com o minimo de altera¢des e personalizages, na maior
parte das situagdes, tendo em vista os padrdes definidos pelo ANSI X3H2 (SQL),
padrfes estes implementados por todos os sistemas de gerenciamento de dados
relacionais disponiveis. Os Sistemas de Gerenciamento de Dados Orientados a
Objetos somente se tornardo uma alternativa vidvel para todas os tipos de solu¢des
quando alcangarem o mesmo grau de padronizagio e flexibilidade.

As caracteristicas definidas pelo Manifesto do Sistema de Gerenciamento de Dados
apresentam as caracteristicas que norteiam o desenvolvimento dos Sistemas de
Gerenciamento de Dados Orientados a Objetos e que devem servir como referéncia
no momento de escolher um sistema disponivel no mercado. A caracteristica
principal € como os sistemas tratam a persisténcia dos objetos ¢ a torna transparente
para o usudrio desenvolvedor, assim praticas de desenvolvimento utilizadas
atualmente poderdio ser facilmente convertidas quando os programas utilizarem
bancos de dados orientados a objetos. Outra caracteristica de destaque ¢é a habilidade
de definigdio de objetos de maior complexidade, tomando a manipulagdo de arquivos

de multimidia mais amigavel.

65

Apesar dos Sistemas Gerenciadores de Bancos de Dados Orientados a Objetos
apresentar iniimeras vantagens e as suas caracteristicas o indicarem como a solugdo
perfeita para os novos desafios dos novos sistemas, a aceitagdo do produto no
mercado possui os mesmo desafios que as linguagens de programacdio orientadas a
objetos vem enfrentando e por isso ainda nfo conseguiu se tornar o padrio de
desenvolvimento atuwal. A falta de profissionais capacitados, dificuldade de
aprendizado, a falta de padronizagio da linguagem sdo os principais problemas
enfrentados pelos Sistemas Gerenciadores de Bancos de Dados Orientados a Objetos.
Os SGBD Relacionais ¢ 0s SGBD Orientados a objetos ainda irfio compartithar o
mercado de banco de dados por muito tempo, e demoraré bastante tempo para os
sistemas atuais migrarem para o0 SGDB Orientados a Objetos.

Isto leva a conclusdo que a tecnologia dos SGBD Orientados a Objetos apresenta
caracteristicas importantes para os atuais sistemas em desenvolvimento, e que as
equipes de desenvolvimento devem investir no aprendizado e na utilizagio de
tecnologias orientadas a objetos, pois sua utilizacdo serd necessiria devido a

complexidade dos sistemas e os requisito dos aplicativos atuais,

66

13. BIBLIOGRAFIA
Neto ,R. N.; Pereira Neto ,F. G.. Banco de dados Orientados a Objetos, 1998

Third-Generation Database System Manifesto ~ The Committee for
Advanced DBMS Function

IDC, niimero 22542. “Enterprise Database Management Systems Market”-
Forecast and Analysis, 2000-2004, disponivel em <http://'www.idc.com>, maio
2000

Market Overview — Trajectory Analysis : ODBMS Vendors — dezembro,
1997

Brian, J. The Object Database Management Group — DBMS, julho 1997
Obasanjo, D.. An Exploration of Object Oriented Database Management
Systems, Julho 1997

Wade, A. E., Ph.D. Object Query Standards. SIGMOD Record, Vol.25, No. 1,
marc¢o 1996

Zand, M.: Collins, V.; Caviness, D. A Survey of Current Object-Oriented
Databases. Em : DataBase Advances in Information Systems, Vol. 26. No. 1,

fevereiro,1995.

